login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of achiral colorings of the 24 octahedral facets (or 24 vertices) of the 4-D 24-cell using subsets of a set of n colors.
11

%I #14 Mar 10 2024 13:39:01

%S 1,6504,8416440,1455789440,80139247500,2125945744776,34026498820524,

%T 376045864704000,3131319814422255,20854395850585000,

%U 115919421344402676,554976171149122944,2343894146343268610,8896568181794053320

%N Number of achiral colorings of the 24 octahedral facets (or 24 vertices) of the 4-D 24-cell using subsets of a set of n colors.

%C An achiral coloring is identical to its reflection. The Schläfli symbol of the 24-cell is {3,4,3}. It is self-dual. There are 576 elements in the automorphism group of the 24-cell that are not in its rotation group. They divide into 10 conjugacy classes. The first formula is obtained by averaging the vertex (or facet) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.

%C Count Odd Cycle Indices Count Odd Cycle Indices

%C 12 x_1^12x_2^6 72 x_2^2x_4^5

%C 12 x_1^6x_2^9 96 x_1^2x_2^2x_6^3

%C 12 x_1^2x_2^11 96 x_2^3x_3^2x_6^2

%C 12 x_2^12 96 x_3^4x_6^2

%C 72 x_1^2x_2^1x_4^5 96 x_6^4

%H Robert A. Russell, <a href="/A338951/b338951.txt">Table of n, a(n) for n = 1..30</a>

%H <a href="/index/Rec#order_19">Index entries for linear recurrences with constant coefficients</a>, signature (19, -171, 969, -3876, 11628, -27132, 50388, -75582, 92378, -92378, 75582, -50388, 27132, -11628, 3876, -969, 171, -19, 1).

%F a(n) = (8*n^4 + 8*n^6 + 22*n^7 + 6*n^8 + n^12 + n^13 + n^15 + n^18) / 48.

%F a(n) = 1*C(n,1) + 6502*C(n,2) + 8396931*C(n,3) + 1422162700*C(n,4) + 72944399665*C(n,5) + 1666778870130*C(n,6) + 20777144613015*C(n,7) + 158973991255800*C(n,8) + 803196369526320*C(n,9) + 2806639981714800*C(n,10) + 6979192091902800*C(n,11) + 12538220293368000*C(n,12) + 16327662245294400*C(n,13) + 15272334392515200*C(n,14) + 10003736158416000*C(n,15) + 4357170994176000*C(n,16) + 1133753677056000*C(n,17) + 133382785536000*C(n,18), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.

%F a(n) = 2*A338949(n) - A338948(n) = A338948(n) - 2*A338950(n) = A338949(n) - A338950(n).

%t Table[(8n^4+8n^6+22n^7+6n^8+n^12+n^13+n^15+n^18)/48,{n,15}]

%Y Cf. A338948 (oriented), A338949 (unoriented), A338950 (chiral), A338955 (edges, faces), A132366 (5-cell), A337955 (8-cell vertices, 16-cell facets), A337958 (16-cell vertices, 8-cell facets), A338967 (120-cell, 600-cell).

%K nonn,easy

%O 1,2

%A _Robert A. Russell_, Nov 17 2020