login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that the Diophantine equation x^3 + y^3 + 2*z^3 = k has nontrivial primitive parametric solutions.
1

%I #31 Apr 16 2022 05:40:12

%S 2,16,128,1024,1458,8192,11664,31250,65536,93312,235298,524288,746496,

%T 1062882,2000000,3543122,3906250,5971968,9653618,15059072,22781250,

%U 28697814,33554432,47775744,48275138,68024448,80707214,94091762,128000000,171532242,226759808

%N Numbers k such that the Diophantine equation x^3 + y^3 + 2*z^3 = k has nontrivial primitive parametric solutions.

%C The data are derived from the following formula:

%C (a^2 - a*t - t^2)^3 + (a^2 + a*t - t^2)^3 + 2*(t^2)^3 = 2*a^6

%C (a^3 - 3*t^3)^3 + (a^3 + 3*t^3) + 2*(-3*a*t^2)^3 = 2*a^9;

%C (9*a^3 - t^3)^3 + (9*a^3 + t^3)^3 + 2*(-3*a*t^2)^3 = 1458*a^9;

%C (6*a^3*t - 72*t^4)^3 + (72*t^4)^3 + 2*(a^4 - 36*a*t^3)^3 = 2*a^12;

%C (6*a^3*t - 9*t^4)^3 + (9*t^4)^3 + 2*(2*a^4 - 9*a*t^3)^3 = 16*a^12 = 2*2^3*a^12;

%C (18*a^3*t - 8*t^4)^3 + (8*t^4)^3 + 2*(9*a^4 - 12*a*t^3)^3 = 1458*a^12 = 2*9^3*a^12;

%C (18*a^3*t - t^4)^3 + (t^4)^3 + 2*(18*a^4 - 3*a*t^3)^3 = 11664*a^12 = 2*18^3*a^12.

%D R. K. Guy, Unsolved Problems in Number Theory, D5.

%H Kenji Koyama, <a href="https://doi.org/10.1090/S0025-5718-00-01202-3">On searching for solutions of the Diophantine equation x^3 + y^3 + 2z^3 = n</a>, Math. Comp, 69 (2000), 1735-1742.

%H J. C. P. Miller & M. F. C. Woollett, <a href="https://mathscinet.ams.org/mathscinet-getitem?mr=67916">Solutions of the Diophantine equation x^3 + y^3 + z^3 = k</a>, J. London Math. Soc. 30(1955), 101-110.

%H Beniamino Segre, <a href="https://mathscinet.ams.org/mathscinet-getitem?mr=46064">On the rational solutions of homogeneous cubic equations in four variables</a>, Math. Notae, 11 (1951), 1-68.

%e 16 is a term, because when t is an integer, (6*(2*t + 1) - 9*(2*t + 1)^4, 9*(2*t + 1)^4, 2 - 9*(2*t + 1)^3) is a nontrivial primitive parametric solution of x^3 + y^3 + 2*z^3 = 16.

%t t1 = 2*Range[23]^6;

%t t2 = 2*{1, 2, 4, 5, 7, 8}^9;

%t t3 = 1458*Range[4]^9;

%t t4 = 2*{1, 5}^12;

%t t5 = 16*{1, 2, 4}^12;

%t t6 = 1458*{1, 3}^12;

%t t7 = 11664*{1, 2, 3}^12;

%t Take[Union[t1, t2, t3, t4, t5, t6, t7], 31]

%Y Cf. A113490, A173515, A175365, A224215, A226903, A281224, A327586, A338932.

%K nonn

%O 1,1

%A _XU Pingya_, Nov 16 2020

%E Missing terms 1024 and 746496 added by _XU Pingya_, Mar 14 2022