%I #67 Dec 23 2020 08:42:39
%S 1,3,2,5,11,3,7,11,9,4,9,37,31,27,5,11,28,8,7,19,6,13,79,69,61,55,51,
%T 7,15,53,47,21,19,35,33,8,17,137,41,37,101,31,29,83,9,19,86,78,71,13,
%U 12,56,53,51,10,21,211,193,177,163,151,141,133,127,123,11,23,127,39,18,50,31,29,41,13,25,73,12
%N Denominators in a set of expansions of the single-term Machin-like formula for Pi.
%C Numerators are A338878.
%C Abrarov et al. give an identity arctan(n*x) = Sum_{m=1..n} arctan(x / (1 + (m-1)*m*x^2)). At x=1/n this identity provides set of expansions of the single-term Machin-like formula for Pi in form Pi/4 = arctan(1) = Sum_{m=1..n} arctan(n/((m-1)*m + n^2)). For m = n - k + 1 at k=1..n the fractions n / ((m-1)*m + n^2) constitute the triangle with rows in ascending order:
%C k= 1 2 3 4 5 6
%C n=1: 1;
%C n=2: 1/3, 1/2;
%C n=3: 1/5, 3/11, 1/3;
%C n=4: 1/7, 2/11, 2/9, 1/4;
%C n=5: 1/9, 5/37, 5/31, 5/27, 1/5;
%C n=6: 1/11, 3/28, 1/8, 1/7, 3/19, 1/6;
%H Sanjar Abrarov, <a href="/A338879/b338879.txt">Table of n, a(n) for n = 1..120</a>
%H Sanjar M. Abrarov, Rehan Siddiqui, Rajinder K. Jagpal, and Brendan M. Quine, <a href="https://arxiv.org/abs/2004.11711">Unconditional applicability of the Lehmer's measure to the two-term Machin-like formula for pi</a>, arXiv:2004.11711 [math.GM], 2020.
%F T(n,k) = denominator of n / ((n-k)*(n-k+1) + n^2), for n>=1 and 1 <= k <= n.
%F Pi/4 = Sum_{k=1..n} arctan(A338878(n,k) / T(n,k)).
%e The triangle T(n,k) begins:
%e k= 1 2 3 4 5 6
%e n=1: 1;
%e n=2: 3, 2;
%e n=3: 5, 11, 3;
%e n=4: 7, 11, 9, 4;
%e n=5: 9, 37, 31, 27, 5;
%e n=6: 11, 28, 8, 7, 19, 6;
%e For example, at n = 3 the expansion formula is Pi/4 = arctan(1/5) + arctan(3/11) + arctan(1/3) and the corresponding sequence in the denominators is 5,11,3.
%t (*Define variable*)
%t PiOver4[m_] := Sum[ArcTan[m/((k - 1)*k + m^2)], {k, 1, m}];
%t (*Expansions*)
%t m := 1;
%t While[m <= 10,
%t If[m == 1, Print["\[Pi]/4 = ArcTan[1/1]"],
%t Print["\[Pi]/4 = ", PiOver4[m]]]; m = m + 1];
%t (*Verification*)
%t m := 1;
%t While[m <= 10, Print[PiOver4[m] == Pi/4]; m = m + 1];
%t (*Denominators*)
%t For[n = 1, n <= 10, n++, {k := 1; sq := {};
%t While[n >= k, AppendTo[sq, Denominator[n/((n - k)*(n - k
%t + 1) + n^2)]]; k++]}; Print[sq]];
%o (PARI) T(n, k) = if (n>=k, denominator(n/((n - k)*(n - k + 1) + n^2)))
%o matrix(10, 10, n, k, T(n, k)) \\ _Michel Marcus_, Nov 14 2020
%Y Cf. A338878 (numerators), A003881 (Pi/4).
%K nonn,frac,tabl
%O 1,2
%A _Sanjar Abrarov_, Nov 13 2020