login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array T(n, m) read by ascending antidiagonals: numerators of shifted Fubini numbers F(n, m) where m >= 0.
3

%I #28 Jan 01 2021 11:55:10

%S 1,1,1,3,1,1,13,5,1,1,75,2,5,1,1,541,191,29,29,1,1,4683,76,263,149,7,

%T 1,1,47293,5081,4157,24967,2687,727,1,1,545835,674,93881,115567,44027,

%U 66247,631,1,1,7087261,386237,21209,377909,31627,37728769,354061,4481,1,1

%N Array T(n, m) read by ascending antidiagonals: numerators of shifted Fubini numbers F(n, m) where m >= 0.

%H Takao Komatsu, <a href="https://www.researchgate.net/publication/344595540_SHIFTED_BERNOULLI_NUMBERS_AND_SHIFTED_FUBINI_NUMBERS">Shifted Bernoulli numbers and shifted Fubini numbers</a>, Linear and Nonlinear Analysis, Volume 6, Number 2, 2020, 245-263.

%F T(n, m) = numerator(F(n, m)).

%F F(n, m) = n!*det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in 1/(m + 1)!, 1, 0, ..., 0 and whose first column consists in 1/(m + 1)!, -1/(m + 2)!, ..., (-1)^(n-1)/(m + n)! (see Proposition 5.1 in Komatsu).

%F F(n, m) = n!*Sum_{k=0..n-1} F(k, m)/((n - k + m)!*k!) for n > 0 and m >= 0 with F(0, m) = 1 (see Lemma 5.2).

%F F(n, m) = [x^n] n!*x^m/(x^m - exp(x) + E_m(x)), where E_m(x) = Sum_{n=0..m} x^n/n! (see Theorem 5.3 in Komatsu).

%F F(n, m) = n!*Sum_{k=1..n} Sum_{i_1+...+i_k=n, i_1,...,i_k>=1} Product_{j=1..k} 1/(i_j + m)! for n > 0 and m >= 0 (see Theorem 5.4).

%F F(1, m) = 1/(m + 1)! (see Theorem 5.5 in Komatsu).

%F F(n, m) = n!*Sum_{t_1+2*t_2+...+n*t_n=n} (t_1,...,t_n)!*(-1)^(n-t_1-...-t_n)*Product_{j=1..n} (1/(m + j)!)^t_j for n >= m >= 1 (see Theorem 5.7 in Komatsu).

%F (-1)^(n-1)/(n + m)! = det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in F(1, m), 1, 0, ..., 0 and whose first column consists in F(1, m), F(2, m)/2!, ..., F(n, m)/n! for n > 0 (see Theorem 5.8 in Komatsu).

%F Sum_{k=0..n} binomial(n, k)*F(k, m)*F(n-k, m) = - n!/(m^2*m!)*Sum_{l=0..n-1} ((m! + 1)/(m*m!))^(n-l-1)*(l*(m! + 1) - m)/l!*F(l, m) - (n - m)/m*F(n, m) for m > 0 (see Theorem 5.11 in Komatsu).

%e Array T(n, m):

%e n\m| 0 1 2 3 ...

%e ---+--------------------------------

%e 0 | 1 1 1 1 ...

%e 1 | 1 1 1 1 ...

%e 2 | 3 5 5 29 ...

%e 3 | 13 2 29 149 ...

%e ...

%e Related table of shifted Fubini numbers F(n, m):

%e 1 1 1 1 ...

%e 1 1/2 1/6 1/24 ...

%e 3 5/6 5/36 29/1440 ...

%e 13 2 29/180 149/11520 ...

%e ...

%t F[n_,m_]:=n!Coefficient[Series[x^m/(x^m-Exp[x]+Sum[x^k/k!,{k,0,m}]),{x,0,n}],x,n]; Table[Numerator[F[n-m,m]],{n,0,9},{m,0,n}]//Flatten

%o (PARI) tm(n, m) = {my(m = matrix(n, n, i, j, if (i==1, if (j==1, 1/(m + 1)!, if (j==2, 1)), if (j==1, (-1)^(i+1)/(m + i)!)))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m; }

%o T(n, m) = numerator(n!*matdet(tm(n, m))); \\ _Michel Marcus_, Dec 31 2020

%Y Cf. A000012 (n = 0 and n = 1), A000670 (m = 0), A226513 (high-order Fubini numbers), A232472, A232473, A232474, A257565, A338873, A338874.

%Y Cf. A338876 (denominators).

%K nonn,frac,tabl

%O 0,4

%A _Stefano Spezia_, Dec 25 2020