Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Nov 17 2020 14:10:37
%S 2,2,6,7,9,9,6,2,6,7,7,0,6,7,2,4,2,4,7,3,2,8,5,5,3,2,8,0,7,2,5,3,7,1,
%T 7,7,4,5,2,7,0,4,2,2,5,4,4,0,0,8,1,8,7,7,2,2,7,5,5,9,0,8,2,9,0,5,0,7,
%U 8,3,7,4,0,7,5,1,4,6,9,5,7,3,5,7,2,1,7,3,8,3,6,2,9,0,9,9,2,5,7,0,0,4,2,7,3,1,5,8,7,3,1,7,1,1,5,7,6,5,8,8,1,9,3,4,0,9,7,2,8,1,1,3,9,0
%N Decimal expansion of the smallest positive number 'c' such that numbers of the form 1+floor(c^(n^1.5)) for all n >= 0 are distinct primes.
%C Assuming Cramer's conjecture on largest prime gaps, it can be proved that there exists at least one constant 'c' such that all a(n) are primes for n as large as required. The constant giving the smallest growth rate is c=2.2679962677067242473285532807253717745270422544...
%C Algorithm to generate the smallest constant 'c' and the associated prime number sequence a(n)=1+floor(c^(n^1.5)).
%C 0. n=0, a(0)=2, c=2, d=1.5
%C 1. n=n+1
%C 2. b=1+floor(c^(n^d))
%C 3. p=smpr(b) smallest prime >= b
%C 4. If p=b then a(n)=p, go to 1.
%C 5. c=(p-1)^(1/n^d)
%C 6. a(n)=p
%C 7. k=1
%C 8. b=1+floor(c^(k^d))
%C 9. If b<>a(k) then p=smpr(b), n=k, go to 5.
%C 10. If k<n-1 then k=k+1, go to 8.
%C 11. go to 1.
%C The precision of 'c' with the 135 digits listed above is sufficient to calculate the first 50 terms of the prime sequence. The prime number given by the term of index n=49 has 121 decimal digits.
%e 2.26799626770672424732855328072537177452704225440081877227559082905078374075...
%o (PARI)
%o c(n=40, prec=100)={
%o my(curprec=default(realprecision));
%o default(realprecision, max(prec, curprec));
%o my(a=List([2]), d=1.5, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); );
%o for(j=1, n-1,
%o b=1+floor(c^(j^d));
%o until(ok,
%o ok=1;
%o p=smpr(b);
%o listput(a,p,j+1);
%o if(p!=b,
%o c=(p-1)^(j^(-d));
%o for(k=1,j-2,
%o b=1+floor(c^(k^d));
%o if(b!=a[k+1],
%o ok=0;
%o j=k;
%o break;
%o );
%o );
%o );
%o );
%o );
%o default(realprecision, curprec);
%o return(c);
%o };
%o digits(floor(c(55,200)*10^50))
%o \\ _François Marques_, Nov 17 2020
%Y Cf. A338613, A338850.
%K nonn,cons
%O 1,1
%A _Bernard Montaron_, Nov 11 2020