login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n!/6) * Sum_{i,j,k > 0 and i+j+k=n} d(i)*d(j)*d(k)/(i*j*k), where d(n) is the number of divisors of n.
1

%I #7 Nov 10 2020 09:33:56

%S 0,0,1,12,100,870,7588,73808,764524,8448120,103816944,1334764728,

%T 18483356736,274780501632,4371694872192,71815113008640,

%U 1282261138007040,23828058693642240,468231649812725760,9599857257164820480,205863214718290636800,4646428416182168985600

%N a(n) = (n!/6) * Sum_{i,j,k > 0 and i+j+k=n} d(i)*d(j)*d(k)/(i*j*k), where d(n) is the number of divisors of n.

%o (PARI) {a(n) = my(u='u); n!*polcoef(polcoef(prod(k=1, n, (1-x^k+x*O(x^n))^(-u/k)), n), 3)}

%Y Column 3 of A338805.

%Y Cf. A000005, A059357.

%K nonn

%O 1,4

%A _Seiichi Manyama_, Nov 10 2020