login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{d|n} (n/d)^d * binomial(d+n/d-1, d).
7

%I #19 May 09 2021 13:34:32

%S 1,5,10,29,26,123,50,305,352,668,122,3844,170,2593,9704,13825,290,

%T 41598,362,118259,107986,33047,530,929102,394376,130744,1203580,

%U 2737415,842,9910225,962,13315073,14199222,2404670,33547310,136502007,1370,10555795,168405072,548460064,1682

%N a(n) = Sum_{d|n} (n/d)^d * binomial(d+n/d-1, d).

%H Seiichi Manyama, <a href="/A338662/b338662.txt">Table of n, a(n) for n = 1..5000</a>

%F G.f.: Sum_{k >= 1} (1/(1 - k * x^k)^k - 1).

%F If p is prime, a(p) = 1 + p^2.

%t a[n_] := DivisorSum[n, (n/#)^# * Binomial[# + n/# - 1, #] &]; Array[a, 40] (* _Amiram Eldar_, Apr 22 2021 *)

%o (PARI) a(n) = sumdiv(n, d, (n/d)^d*binomial(d+n/d-1, d));

%o (PARI) N=66; x='x+O('x^N); Vec(sum(k=1, N, 1/(1-k*x^k)^k-1))

%Y Cf. A081543, A338663, A343574.

%K nonn

%O 1,2

%A _Seiichi Manyama_, Apr 22 2021