login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Inverse boustrophedon transform of the partition numbers.
1

%I #9 Jun 11 2022 01:19:51

%S 1,0,1,-2,2,-19,39,-257,1113,-6829,42399,-299550,2281531,-18901042,

%T 168402645,-1608304966,16381456532,-177291076953,2031597803009,

%U -24573784682206,312883002507064,-4182938253898882,58584703430964506,-857812167322107132,13106404407407087063

%N Inverse boustrophedon transform of the partition numbers.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BoustrophedonTransform.html">Boustrophedon Transform</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Boustrophedon_transform">Boustrophedon transform</a>

%H <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a>

%F a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A000111(n-k) * A000041(k).

%o (Python)

%o import sympy

%o def A338400(n):

%o T=[]

%o for k in range(n+1):

%o T.append(sympy.npartitions(k))

%o T.reverse()

%o for i in range(k):

%o T[i+1]=T[i]-T[i+1]

%o return T[-1]

%o (Python)

%o from itertools import islice, count, accumulate

%o from operator import sub

%o from sympy import npartitions

%o def A338400_gen(): # generator of terms

%o blist = tuple()

%o for i in count(0):

%o yield (blist := tuple(accumulate(reversed(blist),func=sub,initial=npartitions(i))))[-1]

%o A338400_list = list(islice(A338400_gen(),20)) # _Chai Wah Wu_, Jun 10 2022

%Y Cf. A000041, A000111, A000751.

%K sign

%O 0,4

%A _Pontus von Brömssen_, Oct 24 2020