|
|
A338389
|
|
Numbers k such that there are exactly two biquadratefree powerful numbers (A338325) between k^2 and (k+1)^2.
|
|
6
|
|
|
14, 31, 67, 72, 82, 93, 98, 110, 132, 140, 156, 172, 189, 192, 223, 240, 257, 281, 285, 322, 347, 368, 379, 407, 410, 414, 426, 441, 455, 468, 472, 481, 488, 514, 515, 517, 524, 525, 537, 551, 555, 574, 579, 602, 613, 664, 680, 693, 702, 703, 737, 743, 749, 755
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The asymptotic density of this sequence is 0.058757863... (Dehkordi, 1998).
|
|
LINKS
|
|
|
EXAMPLE
|
14 is a term since there are exactly two biquadratefree powerful numbers, 200 = 2*3 * 5^2 and 216 = 2^3 * 3^3, between 14^2 = 196 and (14+1)^2 = 225.
|
|
MATHEMATICA
|
bqfpowQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], MemberQ[{2, 3}, #] &]; Select[Range[800], Count[Range[#^2 + 1, (# + 1)^2 - 1], _?bqfpowQ] == 2 &]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|