Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Nov 16 2020 11:14:28
%S 0,0,0,0,0,0,0,0,0,0,1,3,6,10,14,19,25,32,40,48,57,68,82,97,113,131,
%T 151,173,196,220,246,273,304,337,373,411,452,496,541,589,640,692,748,
%U 807,871,939,1011,1086,1162,1242,1326,1413,1503,1597,1696,1799,1907,2018,2133,2254
%N Number of integer-sided disphenoids (isosceles tetrahedra) with scalene triangle faces and side lengths <=n which can be used to build a kaleidocycle by connecting 6 congruent pieces into a cycle.
%C Three positive numbers a, b and c (without loss of generality c<=a, c<=b) define the faces of a disphenoid which can be used for a kaleidocycle if and only if -8*(a^2-b^2)^2*(a^2+b^2)-5*c^6+11*(a^2-b^2)^2*c^2+2*(a^2+b^2)*c^4>=0.
%D Doris Schattschneider and Wallace Walker, M.C. Escher Kaleidocycles, 1977. ISBN 0-906212-28-6
%H Herbert Kociemba, <a href="http://kociemba.org/themen/kaleidocycles/intro.html">Kaleidocycles with 6 Disphenoids</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Kaleidocycle">Kaleidocycle</a>
%e For example a(11)=1 and a(n)=0 for n<11 because the only scalene possible triangle face for a disphenoid with edge lengths <=11 is {11,10,8}. All other possible triples define disphenoids where the kaleidocycle movement blocks at some point or do not define disphenoids at all.
%t value[a_,b_,c_]:=-8 (a^2-b^2)^2 (a^2+b^2)-5 c^6+11 (a^2-b^2)^2 c^2+2 (a^2+b^2) c^4
%t a[n_]:=Module[{a,b,c,t=0},Do[If[value[a,b,c]>=0,t++],{c,n},{b,c+1,n},{a,b+1,n}];t];
%t Array[a,60]
%Y Cf. A338334, A338336.
%K nonn
%O 1,12
%A _Herbert Kociemba_, Oct 22 2020