login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A338304
Decimal expansion of Sum_{k>=0} 1/L(2^k), where L(k) is the k-th Lucas number (A000032).
3
1, 4, 9, 7, 9, 2, 0, 3, 8, 0, 9, 9, 9, 0, 6, 2, 7, 1, 9, 8, 7, 0, 6, 8, 5, 5, 5, 3, 9, 9, 2, 8, 5, 9, 6, 0, 8, 0, 7, 2, 0, 7, 7, 1, 9, 8, 5, 7, 0, 8, 5, 9, 7, 0, 4, 0, 4, 9, 3, 2, 2, 3, 9, 8, 9, 5, 4, 0, 5, 2, 7, 7, 6, 9, 5, 3, 2, 2, 3, 7, 8, 3, 9, 9, 3, 2, 1
OFFSET
1,2
COMMENTS
Erdős and Graham (1980) asked whether this constant is irrational or transcendental.
Badea (1987) proved that it is irrational, and André-Jeannin (1991) proved that it is not a quadratic irrational in Q(sqrt(5)), in contrast to the corresponding sum with Fibonacci numbers, Sum_{k>=0} 1/F(2^k) = (7-sqrt(5))/2 (A079585).
Bundschuh and Pethö (1987) proved that it is transcendental.
LINKS
Richard André-Jeannin, A note on the irrationality of certain Lucas infinite series, The Fibonacci Quarterly, Vol. 29, No. 2 (1991), pp. 132-136.
Catalin Badea, The irrationality of certain infinite series, Glasgow Mathematical Journal, Vol. 29, No. 2 (1987), pp. 221-228.
Peter Bundschuh and Attila Pethö, Zur transzendenz gewisser Reihen, Monatshefte für Mathematik, Vol. 104, No. 3 (1987), pp. 199-223, alternative link.
Paul Erdős and Ronald L. Graham, Old and new problems and results in combinatorial number theory, L'enseignement Mathématique, Université de Genève, 1980, pp. 64-65.
FORMULA
Equals 1 + Sum_{k>=0} 1/A001566(k).
EXAMPLE
1.49792038099906271987068555399285960807207719857085...
MATHEMATICA
RealDigits[Sum[1/LucasL[2^n], {n, 0, 10}], 10, 100][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Oct 21 2020
STATUS
approved