login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A338200 The number of similarity classes of pointed reflection spaces of residue two in an n-dimensional vector space over GF(2). 0
0, 0, 1, 2, 4, 6, 9, 12, 17, 21, 27, 33, 41, 48, 58, 67, 79, 90, 104, 117, 134, 149, 168, 186, 208, 228, 253, 276, 304, 330, 361, 390, 425, 457, 495, 531, 573, 612, 658, 701, 751, 798, 852, 903, 962, 1017, 1080, 1140, 1208, 1272, 1345, 1414, 1492, 1566, 1649 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Table of n, a(n) for n=1..55.

S. Azam, M. Tomie, and Y. Yoshii, Classification of pointed reflection spaces, Osaka Journal of Mathematics.

Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-2,0,0,1,1,-1).

FORMULA

a(n) = (1/8)*n*(n-2) + 2*(Sum_{k=3..n/2} p(k,3)) + p((n+2)/2,3) if n is even; a(n) = 2*floor((n-1)/4)*floor((n+1)/4) + 2*(Sum_{k=3..(n-1)/2} p(k,3)) + p((n+1)/2,3) + p((n+3)/2,3) if n is odd, where p(k,3) = A069905(k) is the number of partitions of k into three parts.

From Andrew Howroyd, Oct 29 2020: (Start)

a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-10) for n > 10.

G.f.: x^3*(1 + x + x^2 - x^4 - x^5)/((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).

(End)

MATHEMATICA

F[n_] := If[EvenQ[n],

  n (n - 2)/8 +

   2*Sum[Length[IntegerPartitions[k, {3}]], {k, 3, n/2}] +

   Length[IntegerPartitions[(n + 2)/2, {3}]],

  2*Floor[(n - 1)/4]*Floor[(n + 1)/4] +

   2*Sum[Length[IntegerPartitions[k, {3}]], {k, 3, (n - 1)/2}] +

   Length[IntegerPartitions[(n + 1)/2, {3}]] +

   Length[IntegerPartitions[(n + 3)/2, {3}]]]

(* Second program: *)

LinearRecurrence[{1, 1, 0, 0, -2, 0, 0, 1, 1, -1}, {0, 0, 1, 2, 4, 6, 9, 12, 17, 21}, 55] (* Jean-Fran├žois Alcover, Nov 13 2020 *)

PROG

(PARI) concat([0, 0], Vec((1 + x + x^2 - x^4 - x^5)/((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)) + O(x^50))) \\ Andrew Howroyd, Oct 29 2020

CROSSREFS

Cf. A069905.

Sequence in context: A048171 A090178 A080548 * A194450 A080556 A229093

Adjacent sequences:  A338197 A338198 A338199 * A338201 A338202 A338203

KEYWORD

nonn,easy

AUTHOR

Masaya Tomie, Oct 16 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 28 23:26 EDT 2021. Contains 346340 sequences. (Running on oeis4.)