%I #12 Nov 24 2023 12:07:41
%S 35,65,91,209,455,533,595,629,679,901,923,989,1001,1241,1295,1495,
%T 1547,1729,1769,1855,1961,1991,2015,2345,2431,2509,2555,2639,2701,
%U 2795,2911,3007,3059,3367,3439,3535,3869,3977,4277,4823,5249,5291,5551,5719,5777
%N Odd composite integers m such that A001353(m)^2 == 1 (mod m).
%C For a, b integers, the generalized Lucas sequence is defined by the relation U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1.
%C This sequence satisfies the relation U(p)^2 == 1 for p prime and b=1,-1.
%C The composite numbers with this property may be called weak generalized Lucas pseudoprimes of parameters a and b.
%C The current sequence is defined for a=4 and b=1.
%D D. Andrica and O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (2020).
%H D. Andrica and O. Bagdasar, <a href="https://repository.derby.ac.uk/item/92yqq/on-some-new-arithmetic-properties-of-the-generalized-lucas-sequences">On some new arithmetic properties of the generalized Lucas sequences</a>, preprint for Mediterr. J. Math. 18, 47 (2021).
%t Select[Range[3, 6000, 2], CompositeQ[#] && Divisible[ChebyshevU[#-1, 2]*ChebyshevU[#-1, 2] - 1, #] &]
%Y Cf. A338007 (a=3, b=1), A338009 (a=5, b=1), A338010 (a=6, b=1), A338011 (a=7, b=1).
%K nonn
%O 1,1
%A _Ovidiu Bagdasar_, Oct 06 2020