The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A338007 Odd composite integers m such that A001906(m)^2 == 1 (mod m). 4
 9, 21, 63, 99, 231, 323, 329, 369, 377, 423, 451, 861, 903, 1081, 1189, 1443, 1551, 1819, 1833, 1869, 1891, 2033, 2211, 2737, 2849, 2871, 2961, 3059, 3289, 3653, 3689, 3827, 4059, 4089, 4179, 4181, 4879, 5671, 5777, 6447, 6479, 6601, 6721, 6903, 7743 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For a, b integers, the generalized Lucas sequence is defined by the relation U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1. This sequence satisfies the relation U(p)^2 == 1 for p prime and b=1,-1. The composite numbers with this property may be called weak generalized Lucas pseudoprimes of parameters a and b. The current sequence is defined for a=3 and b=1. REFERENCES D. Andrica and O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (2020). LINKS Table of n, a(n) for n=1..45. Dorin Andrica and Ovidiu Bagdasar, On Generalized Lucas Pseudoprimality of Level k, Mathematics (2021) Vol. 9, 838. D. Andrica and O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, preprint for Mediterr. J. Math. 18, 47 (2021). MATHEMATICA Select[Range[3, 8000, 2], CompositeQ[#] && Divisible[ChebyshevU[#-1, 3/2]*ChebyshevU[#-1, 3/2] - 1, #] &] CROSSREFS Cf. A338008 (a=4, b=1), A338009 (a=5, b=1), A338010 (a=6, b=1), A338011 (a=7, b=1). Sequence in context: A147337 A020290 A020288 * A147466 A262055 A193276 Adjacent sequences: A338004 A338005 A338006 * A338008 A338009 A338010 KEYWORD nonn AUTHOR Ovidiu Bagdasar, Oct 06 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 25 09:25 EDT 2024. Contains 374587 sequences. (Running on oeis4.)