login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of oriented colorings of the 8 cubic facets of a tesseract or of the 8 vertices of a hyperoctahedron.
8

%I #13 Aug 12 2021 10:25:48

%S 1,15,126,730,3270,11991,37450,102726,253485,573265,1205556,2384460,

%T 4475926,8031765,13858860,23106196,37372545,58837851,90421570,

%U 135971430,200486286,290376955,413769126,580852650,804281725

%N Number of oriented colorings of the 8 cubic facets of a tesseract or of the 8 vertices of a hyperoctahedron.

%C Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols for the tesseract and the hyperoctahedron are {4,3,3} and {3,3,4} respectively. Both figures are regular 4-D polyhedra and they are mutually dual.

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1).

%F a(n) = binomial(binomial(n+1,2)+3,4) + binomial(binomial(n,2),4).

%F a(n) = n * (n+1) * (n^6 - n^5 + 7*n^4 + 29*n^3 + 16*n^2 - 4*n + 48) / 192.

%F a(n) = 1*C(n,1) + 13*C(n,2) + 84*C(n,3) + 312*C(n,4) + 735*C(n,5) + 1020*C(n,6) + 735*C(n,7) + 210*C(n,8), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors.

%F a(n) = A337957(n) + A234249(n+1) = 2*A337957(n) - A337958(n) = 2*A234249(n+1) + A337958(n).

%F From _Stefano Spezia_, Oct 04 2020: (Start)

%F G.f.: x*(1 + 6*x + 27*x^2 + 52*x^3 + 102*x^4 + 21*x^5 + x^6)/(1 - x)^9.

%F a(n) = 9*a(n-1)-36*a(n-2)+84*a(n-3)-126*a(n-4)+126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-8) for n > 8.

%F (End)

%t Table[Binomial[Binomial[n+1,2]+3,4] + Binomial[Binomial[n,2],4],{n,30}]

%Y Cf. A337957 (unoriented), A234249(n+1) (chiral), A337958 (achiral).

%Y Other elements: A331354 (hyperoctahedron edges, tesseract faces), A331358 (hyperoctahedron faces, tesseract edges), A337952 (hyperoctahedron facets, tesseract vertices).

%Y Other polychora: A337895 (5-cell), A338948 (24-cell), A338964 (120-cell, 600-cell).

%Y Row 4 of A325004 (orthotope facets, orthoplex vertices).

%K nonn,easy

%O 1,2

%A _Robert A. Russell_, Oct 03 2020