login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Euler totient function phi = A000010 evaluated at N(n) = floor((3*n-1)/2) = A001651(n), for n >= 1.
2

%I #20 Aug 06 2024 07:24:45

%S 1,1,2,4,6,4,4,10,12,6,8,16,18,8,10,22,20,12,12,28,30,16,16,24,36,18,

%T 16,40,42,20,22,46,42,20,24,52,40,24,28,58,60,30,32,48,66,32,24,70,72,

%U 36,36,60,78,32,40,82,64,42,40,88

%N a(n) = Euler totient function phi = A000010 evaluated at N(n) = floor((3*n-1)/2) = A001651(n), for n >= 1.

%C This sequence gives the row length of the irregular triangle A337936 (complete system of tripling sequences modulo N(n)).

%H Amiram Eldar, <a href="/A337937/b337937.txt">Table of n, a(n) for n = 1..10000</a>

%H Lv Chuan, <a href="https://citeseerx.ist.psu.edu/pdf/134f67dafd17bab61928c5a02e2e9808a27a1dad">On the Mean Value of an Arithmetical Function</a>, in Zhang Wenpeng (ed.), Research on Smarandache Problems in Number Theory (collected papers), 2004, pp. 89-92.

%F a(n) = A000010(A001651(n)) = phi(floor((3*n-1)/2)), for n >= 1.

%F a(n) ~ (9/(4*Pi^2))*n^2 + O(n^(3/2+eps)) (Lv Chuan, 2004). - _Amiram Eldar_, Aug 02 2022

%e The pairs [n, N(n)], n >= 1, begin:

%e [1, 1], [2, 2], [3, 4], [4, 5], [5, 7], [6, 8], [7, 10], [8, 11], [9, 13], [10, 14], [11, 16], [12, 17], [13, 19], [14, 20], [15, 22], [16, 23], [17, 25], [18, 26], [19, 28], [20, 29], ...

%t a[n_] := EulerPhi[Floor[(3*n - 1)/2]]; Array[a, 100] (* _Amiram Eldar_, Oct 22 2020 *)

%o (PARI) a(n) = eulerphi((3*n-1)\2); \\ _Michel Marcus_, Oct 22 2020

%Y Cf. A000010, A001651, A337936.

%K nonn,easy

%O 1,3

%A _Wolfdieter Lang_, Oct 22 2020