

A337925


Digits of n rearranged to be the smallest number with the fewest possible prime factors, counted with multiplicity. Terms retain the same number of digits as n, i.e. leading digits may not be zero.


1



1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 21, 13, 41, 15, 61, 17, 18, 19, 20, 21, 22, 23, 42, 25, 26, 27, 82, 29, 30, 13, 23, 33, 43, 53, 63, 37, 83, 39, 40, 41, 42, 43, 44, 45, 46, 47, 84, 49, 50, 15, 25, 53, 45, 55, 65, 57, 58, 59, 60, 61, 26, 63, 46, 65, 66, 67, 86, 69, 70, 17, 27, 37, 47, 57, 67, 77
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS



FORMULA



MATHEMATICA

a[n_] := Module[{p = FromDigits /@ Select[Permutations @ IntegerDigits[n], First[#] > 0 &]}, o = PrimeOmega[p]; Min[p[[Position[o, Min[o]] // Flatten]]]]; Array[a, 100] (* Amiram Eldar, Oct 19 2020 *)


PROG

(PARI) a(n) = {my(d = digits(n), v = select(x>#(digits(x))==#d, vector((#d)!, i, fromdigits(vector(#d, k, d[numtoperm(#d, i1)[k]])))), b = vecmin(vector(#v, k, bigomega(v[k])))); vecmin(select(x>(bigomega(x)==b), v)); } \\ Michel Marcus, Oct 19 2020


CROSSREFS



KEYWORD



AUTHOR



STATUS

approved



