login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array read by descending antidiagonals: T(n,k) is the number of achiral colorings of the faces of a regular n-dimensional orthoplex (cross polytope) using k or fewer colors.
6

%I #4 Sep 28 2020 21:42:29

%S 1,2,1,3,21,1,4,201,93024,1,5,1076,294157089,199556208371776,1,6,4025,

%T 91983927296,1370366433970979158839987,

%U 346179533768149850758531729588224,1

%N Array read by descending antidiagonals: T(n,k) is the number of achiral colorings of the faces of a regular n-dimensional orthoplex (cross polytope) using k or fewer colors.

%C An achiral arrangement is identical to its reflection. For n=2, the figure is a square with one square face. For n=3, the figure is an octahedron with 8 triangular faces. For higher n, the number of triangular faces is 8*C(n,3).

%C Also the number of achiral colorings of the peaks of an n-dimensional orthotope (hypercube). A peak is an (n-3)-dimensional orthotope.

%H K. Balasubramanian, <a href="https://doi.org/10.33187/jmsm.471940">Computational enumeration of colorings of hyperplanes of hypercubes for all irreducible representations and applications</a>, J. Math. Sci. & Mod. 1 (2018), 158-180.

%F The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).

%F T(n,k) = 2*A337892(n,k) - A337891(n,k) = A337891(n,k) - 2*A337893(n,k) = A337892(n,k) - A337893(n,k).

%e Table begins with T(2,1):

%e 1 2 3 4 5 6 ...

%e 1 21 201 1076 4025 11901 ...

%e 1 93024 294157089 91983927296 7960001890625 304914963625056 ...

%t m=2; (* dimension of color element, here a face *)

%t Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]];

%t FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);

%t CCPol[r_List] := (r1 = r; r2 = cs - r1; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]],0,(per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[])]);

%t PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);

%t pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)

%t row[m]=b;

%t row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^(n-1))]

%t array[n_, k_] := row[n] /. b -> k

%t Table[array[n,d+m-n], {d,7}, {n,m,d+m-1}] // Flatten

%Y Cf. A337891 (oriented), A337892 (unoriented), A337893 (chiral).

%Y Other elements: A325007 (vertices), A337414 (edges).

%Y Other polytopes: A337886 (simplex), A337890 (orthotope).

%Y Rows 2-4 are A000027, A337897, A331361.

%K nonn,tabl

%O 2,2

%A _Robert A. Russell_, Sep 28 2020