login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337849
G.f.: 1 = Sum_{n>=0} a(n) * x^n / (1 + x*(1+x)^n)^(n+1).
1
1, 1, 1, 3, 9, 45, 237, 1591, 11795, 99651, 928507, 9474043, 104866399, 1249073623, 15914416345, 215724860511, 3097002496225, 46904398032017, 746831626559889, 12463977258581151, 217445976215654257, 3956098180940284169, 74897945785223884653
OFFSET
0,4
LINKS
FORMULA
G.f.: 1 = Sum_{n>=0} a(n) * x^n / (1 + x*(1+x)^n)^(n+1).
G.f.: 1 = Sum_{n>=0} a(n) * x^n * (1-x)^(n^2+n+1) / ((1-x)^(n+1) + x)^(n+1).
EXAMPLE
G.f.: 1 = 1/(1 + x) + x/(1 + x*(1+x))^2 + x^2/(1 + x*(1+x)^2)^3 + 3*x^3/(1 + x*(1+x)^3)^4 + 9*x^4/(1 + x*(1+x)^4)^5 + 45*x^5/(1 + x*(1+x)^5)^6 + 237*x^6/(1 + x*(1+x)^6)^7 + 1591*x^7/(1 + x*(1+x)^7)^8 + 11795*x^8/(1 + x*(1+x)^8)^9 + 99651*x^9/(1 + x*(1+x)^9)^10 + ... + a(n)*x^n/(1 + x*(1+x)^n)^(n+1) + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = -polcoeff( sum(m=0, #A-1, A[m+1] * x^m / (1 + x*(1+x)^m +O(x^#A) )^(m+1) ), #A-1) ); A[n+1]}
\\ Print initial terms:
for(n=0, 30, print1(a(n), ", "))
\\ Verify sum equals unity:
sum(n=0, 40, a(n)*x^n / (1 + x*(1+x)^n +O(x^41) )^(n+1) )
CROSSREFS
Cf. A177450.
Sequence in context: A247006 A103620 A138315 * A328267 A038059 A369388
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 26 2020
STATUS
approved