login
A337830
Odd integers k such that 6^((k-1)/2) + 1 == 0 (mod k*(k-1)/2).
0
2843, 2390123, 9893003, 16236347, 46353707, 334358459, 564092747, 584214107, 1640200619, 2010092603, 14044030043, 22315857803, 23753097803
OFFSET
1,1
COMMENTS
Computed terms are prime.
Conjecture: a(n) == 1 mod 406 for n > 5. - Chai Wah Wu, Oct 07 2020
MATHEMATICA
Select[Range[3, 10^7, 2], PowerMod[6, (# - 1)/2, (t = #*(# - 1)/2)] == t - 1 &] (* Amiram Eldar, Sep 24 2020 *)
CROSSREFS
Cf. A337818.
Sequence in context: A232762 A284888 A369597 * A317472 A317473 A257155
KEYWORD
nonn,more
AUTHOR
Benoit Cloitre, Sep 24 2020
EXTENSIONS
a(6)-a(13) from Amiram Eldar, Sep 24 2020
STATUS
approved