Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Nov 21 2021 08:13:57
%S 1,1,2,2,3,3,4,5,6,6,8,9,10,11,13,14,16,17,19,22,24,25,28,31,33,35,39,
%T 43,46,48,52,57,60,63,69,75,78,82,88,94,99,104,111,119,124,129,137,
%U 147,153,160,169,179,187,194,204,216,224,233,246,259,267,277,292,308,318,329,343,361
%N Number of addition triangles with apex n where all rows are strongly increasing.
%C An addition triangle has any finite sequence of positive numbers as base; other rows are formed by adding pairs of adjacent numbers.
%C If the bottom row is strongly increasing, then every row is strongly increasing.
%C 8
%C 3<5
%C 1<2<3
%H Seiichi Manyama, <a href="/A337766/b337766.txt">Table of n, a(n) for n = 1..500</a>
%e For n = 5:
%e 5 5
%e 1,4 2,3 5
%e For n = 6:
%e 6 6
%e 1,5 2,4 6
%e For n = 7:
%e 7 7 7
%e 1,6 2,5 3,4 7
%e For n = 8:
%e 8
%e 3,5 8 8 8
%e 1,2,3 1,7 2,6 3,5 8
%e For n = 9:
%e 9
%e 3,6 9 9 9 9
%e 1,2,4 1,8 2,7 3,6 4,5 9
%o (Ruby)
%o def A(n)
%o f_ary = [[n]]
%o cnt = 1
%o while f_ary.size > 0
%o b_ary = []
%o f_ary.each{|i|
%o s = i.size
%o (1..i[0] - 1).each{|j|
%o a = [j]
%o (0..s - 1).each{|k|
%o num = i[k] - a[k]
%o if num > 0
%o a << num
%o else
%o break
%o end
%o }
%o b_ary << a if a.size == s + 1 && a == a.uniq.sort
%o }
%o }
%o f_ary = b_ary
%o cnt += f_ary.size
%o end
%o cnt
%o end
%o def A337766(n)
%o (1..n).map{|i| A(i)}
%o end
%o p A337766(50)
%Y Equivalent sequences with different restrictions on rows: A062684 (none, except terms are positive), A062896 (not a reversal of a counted row), A337765 (weakly increasing).
%Y Cf. A346523.
%K nonn
%O 1,3
%A _Seiichi Manyama_, Sep 19 2020