login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337733
Numbers that can be written as (k + sum of digits of k) for some k, also as (m + product of digits of m) for some m, and finally as (q * product of digits of q) for some q.
1
4, 16, 24, 56, 81, 88, 138, 144, 192, 242, 250, 297, 366, 408, 456, 516, 520, 522, 564, 575, 704, 744, 777, 795, 819, 884, 900, 912, 966, 1008, 1053, 1071, 1080, 1104, 1134, 1250, 1312, 1316, 1375, 1512, 1520, 1608, 1644, 1680, 1712, 1778, 1928, 1950, 2025, 2048, 2072
OFFSET
1,1
COMMENTS
Equivalently, Bogotá numbers that are not Colombian and that can be written as (m + product of digits of m) for some m.
The only primes that can belong to this sequence are repunits > 11 whose indices are in A004023. It is known that these primes belong to A336983, but do they belong also to A337718?
EXAMPLE
4 = 2 + 2 = 2 + 2 = 2 * 2;
16 = 8 + 8 = 8 + 8 = 4 * 4;
24 = 21 + (2+1) = 17 + (1*7) = 12 * (1*2);
56 = 46 + (4+6) = 51 + (5*1) = 14 * (1*4);
81 = 72 + (7+2) = 63 + (6*3) = 9 * 9.
MATHEMATICA
m = 2100; Select[Intersection @@ Union /@ Transpose[Table[{n + Plus @@ (d = IntegerDigits[n]), n + (p = Times @@ d), n*p}, {n, 1, m}]], # <= m &] (* Amiram Eldar, Sep 18 2020 *)
PROG
(PARI) isok(m) = {if (m==0, return (1)); for (k=1, m, if (k+vecprod(digits(k)) == m, return (1)); ); } \\ A337718
listb(nn) = Vec(setintersect(Set(vector(nn, k, k+sumdigits(k))), Set(vector(nn, k, k*vecprod(digits(k)))))); \\ A336983
lista(nn) = select(x->isok(x), listb(nn)); \\ Michel Marcus, Sep 18 2020
CROSSREFS
Intersection of A176995, A336826 and A337718.
Intersection of A336983 and A337718.
Sequence in context: A145229 A174999 A160996 * A173926 A305884 A239522
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Sep 18 2020
EXTENSIONS
More terms from Michel Marcus, Sep 18 2020
STATUS
approved