Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #13 Sep 16 2020 02:25:57
%S 1,2,4,10,30,78,302,1038,4174,14670,60238,237902,955726,3704142,
%T 14935374,60015950,239994190,951256398
%N Number of regions after generation n of Conant's dissection of a square where the starting edge rotates clockwise around the square and the dissection halves in size after every generation.
%C This is a variation of A335703 where the edge where the dissections begin starts at the bottom edge of the square and then proceeds clockwise around the square after each generation. However unlike A335703, where the dissection halves in size after every two generations, here it halves in size after every single generation. The resulting pattern, which resembles images of a printed circuit for large n, stays fairly constant while the internal regions are cut into smaller rectangles and squares after each generation.
%C The author thanks Rémy Sigrist whose code given in A328078 was modified to generate the larger values of this sequence.
%H Scott R. Shannon, <a href="/A337675/a337675.png">Illustration for n=2</a>.
%H Scott R. Shannon, <a href="/A337675/a337675_1.png">Illustration for n=3</a>.
%H Scott R. Shannon, <a href="/A337675/a337675_2.png">Illustration for n=4</a>.
%H Scott R. Shannon, <a href="/A337675/a337675_3.png">Illustration for n=5</a>.
%H Scott R. Shannon, <a href="/A337675/a337675_4.png">Illustration for n=6</a>.
%H Scott R. Shannon, <a href="/A337675/a337675_5.png">Illustration for n=7</a>.
%H Scott R. Shannon, <a href="/A337675/a337675_6.png">Illustration for n=8</a>.
%H Scott R. Shannon, <a href="/A337675/a337675_7.png">Illustration for n=9</a>.
%H Scott R. Shannon, <a href="/A337675/a337675_8.png">Illustration for n=10</a>.
%H Scott R. Shannon, <a href="/A337675/a337675_9.png">Illustration for n=11</a>.
%H Scott R. Shannon, <a href="/A337675/a337675_10.png">Illustration for n=12</a>.
%H Scott R. Shannon, <a href="/A337675/a337675_11.png">Illustration for n=13</a>.
%Y Cf. A335703, A328078, A337270, A334630, A335093.
%K nonn,more
%O 0,2
%A _Scott R. Shannon_, Sep 15 2020