Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Aug 19 2022 04:40:40
%S 1,0,0,1,0,-2,1,4,-5,-7,18,7,-55,18,146,-155,-322,692,476,-2446,307,
%T 7322,-6276,-18277,33061,33376,-129238,-10899,420594,-276272,-1147125,
%U 1742502,2413761,-7448113,-2292774,25986573,-11940263,-76138258,96229907,178087693,-450647034
%N Expansion of (x^3-1+sqrt((x^4+x^3+4*x^2+x+1)*(x^2-x+1)))/(2*x^2).
%C Coefficients of [sqrt(2)]_q. See link.
%H Sophie Morier-Genoud and Valentin Ovsienko, <a href="https://arxiv.org/abs/2011.10809">Quantum real numbers and q-deformed Conway-Coxeter friezes</a>, arXiv:2011.10809 [math.QA], 2020. See section 3.4.
%F D-finite with recurrence (n+2)*a(n) +4*(n-1)*a(n-2) +(-2*n+5)*a(n-3) +4*(n-4)*a(n-4) +(n-7)*a(n-6)=0. - _R. J. Mathar_, Aug 19 2022
%e G.f. = 1 + x^3 - 2*x^5 + x^6 + 4*x^7 - 5*x^8 - 7*x^9 + 18*x^10 + ...
%o (PARI) my(x='x+O('x^45)); Vec((x^3-1+sqrt((x^4+x^3+4*x^2+x+1)*(x^2-x+1)))/(2*x^2))
%K sign
%O 0,6
%A _Michel Marcus_, Nov 25 2020