login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337528
G.f.: Sum_{n>=0} (2^n + 1)^n * x^n / (1 + (2^n - 1)*x)^(n+1).
1
1, 3, 19, 513, 64447, 33221793, 68416620319, 561987558307353, 18435485678295497887, 2417353606284586529475393, 1267565977842177795997995695599, 2658400215575093543617417352025297273, 22300601642487504748989853483652483024500687
OFFSET
0,2
COMMENTS
This sequence describes a specific case of the following identities:
(1) Sum_{n>=0} (q^n + p)^n * x^n / (1 + p*(q^n + p)*x)^(n+1) = Sum_{n>=0} (q^n - p)^n * x^n / (1 - p*(q^n - p)*x)^(n+1) ;
(2) Sum_{n>=0} (q^n + p)^n * exp(-p*(q^n + p)*x) * x^n/n! = Sum_{n>=0} (q^n - p)^n * exp( p*(q^n - p)*x) * x^n/n! ;
here, q = 2 and p = 1.
FORMULA
O.g.f.: Sum_{n>=0} (2^n + 1)^n * x^n / (1 + (2^n - 1)*x)^(n+1).
O.g.f.: Sum_{n>=0} (2^n - 1)^n * x^n / (1 - (2^n + 1)*x)^(n+1).
E.g.f.: Sum_{n>=0} (2^n + 1)^n * exp(-(2^n - 1)*x) * x^n/n!.
E.g.f.: Sum_{n>=0} (2^n - 1)^n * exp( (2^n + 1)*x) * x^n/n!.
a(n) = Sum_{k=0..n} binomial(n,k) * (2^k + 1)^(n-k) * (2^k - 1)^k.
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * (2^k - 1)^(n-k) * (2^k + 1)^k.
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Aug 31 2020
EXAMPLE
G.f.: A(x) = 1 + 3*x + 19*x^2 + 513*x^3 + 64447*x^4 + 33221793*x^5 + 68416620319*x^6 + 561987558307353*x^7 + 18435485678295497887*x^8 + 2417353606284586529475393*x^9 + 1267565977842177795997995695599*x^10 + ...
where
A(x) = 1 + 3*x/(1 + x)^2 + 5^2*x^2/(1 + 3*x)^3 + 9^3*x^3/(1 + 7*x)^4 + 17^4*x^4/(1 + 15*x)^5 + 33^5*x^5/(1 + 31*x)^6 + ...
Also, by a series identity,
A(x) = 1/(1 - 2*x) + x/(1 - 3*x)^2 + 3^2*x^2/(1 - 5*x)^3 + 7^3*x^3/(1 - 9*x)^4 + 15^4*x^4/(1 - 17*x)^5 + 31^5*x^5/(1 - 33*x)^6 + ...
EXPONENTIAL GENERATING FUNCTION.
E.g.f.: B(x) = 1 + 3*x + 19*x^2/2! + 513*x^3/3! + 64447*x^4/4! + 33221793*x^5/5! + 68416620319*x^6/6! + 561987558307353*x^7/7! + 18435485678295497887*x^8/8! + 2417353606284586529475393*x^9/9! + ...
where
B(x) = 1 + 3*exp(-x)*x + 5^2*exp(-3*x)*x^2/2! + 9^3*exp(-7*x)*x^3/3! + 17^4*exp(-15*x)*x^4/4! + 33^5*exp(-31*x)*x^5/5! + ...
Also, by a series identity,
B(x) = exp(2*x) + exp(3*x)*x + 3^2*exp(5*x)*x^2/2! + 7^3*exp(9*x)*x^3/3! + 15^4*exp(17*x)*x^4/4! + 31^5*exp(33*x)*x^5/5! + ...
PROG
(PARI) {a(n) = my(p=1, q=2, k=1);
A = sum(m=0, n, (q^m + p)^m * x^m / (1 - k*x + p*q^m*x +x*O(x^n))^(m+1) +x*O(x^n));
polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = my(p=1, q=2, k=1);
A = sum(m=0, n, (q^m - p)^m * x^m / (1 - k*x - p*q^m*x +x*O(x^n))^(m+1) +x*O(x^n));
polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = sum(k=0, n, binomial(n, k) * (2^k + 1)^(n-k) * (2^k - 1)^k )}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n, k) * (2^k - 1)^(n-k) * (2^k + 1)^k )}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A337527.
Sequence in context: A079306 A051381 A307080 * A136372 A272571 A355615
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 30 2020
STATUS
approved