login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array read by falling antidiagonals, where A(n,k) = primorial inflation of k prime shifted n times with A003961.
5

%I #10 Aug 28 2020 11:07:10

%S 1,2,1,6,3,1,4,15,5,1,30,9,35,7,1,12,105,25,77,11,1,210,45,385,49,143,

%T 13,1,8,1155,175,1001,121,221,17,1,36,27,5005,539,2431,169,323,19,1,

%U 60,225,125,17017,1573,4199,289,437,23,1,2310,315,1225,343,46189,2873,7429,361,667,29,1,24,15015,1925,5929,1331,96577,5491,12673,529,899,31

%N Square array read by falling antidiagonals, where A(n,k) = primorial inflation of k prime shifted n times with A003961.

%C Array is read by descending antidiagonals with n >= 0 and k >= 1 ranging as: (0, 1), (0, 2), (1, 1), (0, 3), (1, 2), (2, 1), (0, 4), (1, 3), (2, 2), (3, 1), ...

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>

%F A(n,k) = A242378(n,A108951(k)).

%e The top left corner of the array begins as:

%e n/k | 1 2 3 4 5 6 7 8 9 10

%e ----|------------------------------------------------------------

%e 0 | 1, 2, 6, 4, 30, 12, 210, 8, 36, 60, ...

%e 1 | 1, 3, 15, 9, 105, 45, 1155, 27, 225, 315, ...

%e 2 | 1, 5, 35, 25, 385, 175, 5005, 125, 1225, 1925, ...

%e 3 | 1, 7, 77, 49, 1001, 539, 17017, 343, 5929, 7007, ...

%e 4 | 1, 11, 143, 121, 2431, 1573, 46189, 1331, 20449, 26741, ...

%e 5 | 1, 13, 221, 169, 4199, 2873, 96577, 2197, 48841, 54587, ...

%e etc.

%o (PARI)

%o up_to = 105-1; \\ Or 78-1.

%o Ashifted_primorial(n,d) = prod(i=1, primepi(n), prime(i+d));

%o A337470sq(n, k) = { my(f=factor(k)); prod(i=1, #f~, Ashifted_primorial(f[i, 1], n)^f[i, 2]); };

%o A337470list(up_to) = { my(v = vector(1+up_to), i=0); for(a=0, oo, for(b=1, a, i++; if(i > #v, return(v)); v[i] = A337470sq(b-1, (a-(b-1))))); (v); };

%o v337470 = A337470list(up_to);

%o A337470(n) = v337470[1+n];

%Y Cf. A108951 (row 0), A337471 (row 1).

%Y Cf. A003961, A242378.

%Y Cf. also A337205, A337472.

%K nonn,tabl

%O 0,2

%A _Antti Karttunen_, Aug 28 2020