Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Sep 25 2024 09:55:33
%S 16,18,24,27,32,36,40,48,54,56,60,63,64,72,80,81,84,90,96,100,104,108,
%T 112,120,126,128,132,135,140,144,147,150,152,156,160,162,168,176,180,
%U 184,189,192,196,198,200,204,208,210,216,224,225,228,234,240,243,248,250,252,256,260,264,270,272,276,280,288,294,297
%N Numbers k for which A003961(k) > 4*k.
%H Robert Israel, <a href="/A337374/b337374.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%p filter:= proc(n) local F,t;
%p F:= ifactors(n)[2];
%p mul((nextprime(t[1])/t[1])^t[2], t=F) > 4
%p end proc:
%p select(filter, [$1..1000]); # _Robert Israel_, Dec 31 2023
%t filter[n_] := With[{F = FactorInteger[n]}, Product[(NextPrime[t[[1]]]/t[[1]])^t[[2]], {t, F}] > 4];
%t Select[Range[1000], filter] (* _Jean-François Alcover_, Sep 25 2024, after _Robert Israel_ *)
%o (PARI)
%o A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o isA337374(n) = (A003961(n) > (4*n));
%Y Cf. A003961.
%Y Subsequence of A337373, and of A246282.
%K nonn
%O 1,1
%A _Antti Karttunen_, Aug 26 2020