Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Mar 16 2021 04:30:36
%S 1,3,22,44,355,710,1065,1420,1775,2130,2485,2840,3195,312689,1146408,
%T 5419351,10838702,6167950454,21053343141,42106686282,63160029423,
%U 84213372564,105266715705,8958937768937,17917875537874,428224593349304,856449186698608,6134899525417045
%N Integers k with abs(sin(k)) < 1/k.
%C The values > 1 appear to be a subset of the numerators of continued fractions of Pi (A002485) (and/or Pi/2: A096456) and their multiples. Is it possible to find a term k here but not in |A332095| (k |tan k| < 1)? - _M. F. Hasler_, Oct 09 2020
%t Select[Range[3200], Abs[Sin[#]] < 1/# &] (* _Amiram Eldar_, Aug 25 2020 *)
%o (Python)
%o import numpy as np
%o for x in range(1, 10**9):
%o if np.abs(np.sin(x)) < 1/x:
%o print(x, end=", ")
%o (PARI) print1(1);apply( n-> forstep(n=n,oo,n,abs(sin(n))<1/n||return; print1(","n)), contfracpnqn(c=contfrac(Pi),#c)[1,]); \\ _M. F. Hasler_, Oct 09 2020
%Y Cf. A092328, A332095, A046965, A088306, A337249, A332095.
%K nonn
%O 1,2
%A _Anian Brosig_, Aug 25 2020
%E More terms from _M. F. Hasler_, Oct 09 2020