Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Sep 20 2020 00:45:31
%S 1,20,524,19660,854380,40304080,2004409236,103440770760,5486614131756,
%T 297239307415792,16376472734974384,914734188877259884,
%U 51680064605716043636,2948046519564292501232,169560941932509940657016,9822377923336683964009296,572554753384166308597716396
%N a(n) is the number of lattice paths from (0,0) to (3n,3n) using only the steps (1,0) and (0,1) and which do not touch any other points of the form (3k,3k).
%C The terms of this sequence may be computed via a determinant; see Lemma 10.7.2 of the Krattenthaler reference for details.
%H Christian Krattenthaler, <a href="https://www.mat.univie.ac.at/~kratt/artikel/encylatt.pdf">"Lattice path enumeration"</a>. In: Handbook of Enumerative Combinatorics. Edited by Miklos Bona. CRC Press, 2015, pages 589-678.
%F G.f.: 2 - 1 / (Sum_{n>=0} binomial(6*n,3*n) * x^n).
%o (PARI) seq(n)={Vec(2 - 1/(O(x*x^n) + sum(k=0, n, binomial(6*k,3*k)*x^k)))} \\ _Andrew Howroyd_, Aug 25 2020
%Y Cf. A337291, A337292, A337350, A337351.
%K nonn,easy
%O 0,2
%A _Lucas A. Brown_, Aug 24 2020