login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of (1+sigma(s)) / ((s+1)/2), where s is the square of n prime-shifted once (s = A003961(n)^2 = A003961(n^2)).
13

%I #36 Dec 21 2024 22:30:09

%S 1,5,13,41,25,113,61,365,313,221,85,1013,145,109,613,3281,181,2813,

%T 265,1985,1513,761,421,9113,1201,1301,7813,377,481,5513,685,29525,

%U 2113,1625,2965,25313,841,2381,3613,17861,925,13613,1105,6845,15313,3785,1405,82013,7321,10805,4513,11705,1741,70313,4141,8821,6613,865

%N Denominator of (1+sigma(s)) / ((s+1)/2), where s is the square of n prime-shifted once (s = A003961(n)^2 = A003961(n^2)).

%C All terms are members of A007310, because all terms of A337336 and A337337 are.

%C No 1's after the initial one at a(1) => No quasiperfect numbers. See comments in A336700 & A337342.

%C If any quasiperfect numbers qp exist, they must occur also in A325311.

%C Question: Is there any reliable lower bound for this sequence? See A337340, A337341.

%C Duplicate values are rare, but at least two cases exist: a(21) = a(74) = 1513 and a(253) = a(554) = 71065. - _Antti Karttunen_, Jan 03 2024

%H Antti Karttunen, <a href="/A337339/b337339.txt">Table of n, a(n) for n = 1..8191</a>

%H Antti Karttunen, <a href="/A337339/a337339.txt">Data supplement: n, a(n) computed for n = 1..65537</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = A337336(n) / A337337(n) = A048673(n^2) / gcd(A048673(n^2), A336844(n^2)).

%F a(n) = A337336(n) / gcd(A337336(n), 1+A003973(n^2)).

%o (PARI)

%o A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };

%o A337339(n) = { my(s=(A003961(n)^2),u=(s+1)/2); (u/gcd(1+sigma(s), u)); };

%o \\ Or alternatively as:

%o A337339(n) = { my(s=A003961(n^2)); denominator((1+sigma(s))/((s+1)/2)); };

%Y Cf. A003961, A003973, A007310, A048673, A074627, A074630, A209922, A324899, A325311, A336697, A336700, A336844, A337194, A337336, A337337, A337340, A337341, A337342.

%Y Cf. A337338 (numerators).

%Y Cf. also A336848, A336849.

%K nonn,frac

%O 1,2

%A _Antti Karttunen_, Aug 24 2020