Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Sep 10 2020 03:01:09
%S 1,-12,228,-3504,44580,-298032,1407504,-275772096,21324125988,
%T -966349948080,32198201397648,-831808446595776,16275197594916624,
%U -210881419152530112,1110165241205298240,-28746364298042321664,4877709692143697517348,-323151109677783574203312,13976671241536620108719376
%N a(n) = Sum_{k=0..n}C(n,k)*C(n+k,k)*C(2k,k)*C(2n-2k,n-k)*(-8)^(n-k).
%C (-1)^n*a(n) > 0, and Sum_{k=0..n} C(n,k)*C(n+k,k)*C(2k,k)*C(2n-2k,n-k)*(-1)^(n-k) = Sum_{k=0..n}C(n,k)^4.
%C Conjecture 1: Sum_{k>=0}(4k+1) a(k)/(-48)^k = sqrt(72+42*sqrt(3))/Pi.
%C Conjecture 2: For each n > 0, the number (Sum_{k=0..n-1} (-1)^k*(4k+1)*48^(n-1-k)*a(k))/n is a positive integer.
%C Conjecture 3: For any prime p > 3, the square of (Sum_{k=0..p-1} (4k+1)a(k)/(-48)^k)/p is congruent to 14*(3/p)-(p/3)-12 modulo p, where (a/p) is the Legendre symbol.
%C Conjecture 4: Let p > 3 be a prime, and let S(p) = Sum_{k=0..p-1} a(k)/(-48)^k. If p == 1 (mod 4) and p = x^2 + 4y^2 with x and y integers, then S(p) == 4x^2-2p (mod p^2). If p == 3 (mod 4), then S(p) == 0 (mod p^2).
%H Zhi-Wei Sun, <a href="/A337332/b337332.txt">Table of n, a(n) for n = 0..100</a>
%H Zhi-Wei Sun, <a href="http://mathoverflow.net/questions/369963">An explicit solution to the congruence x^2 == 14*(3/p)-(p/3)-12 (mod p)?</a>, Question 369963 at MathOverflow, August 23, 2020.
%H Zhi-Wei Sun, <a href="http://dx.doi.org/10.3934/era.2020070">New series for powers of Pi and related congruences</a>, Electron. Res. Arch. 28(2020), no. 3, 1273-1342.
%H Zhi-Wei Sun, <a href="https://arxiv.org/abs/2009.04379">Some new series for 1/Pi motivated by congruences</a>, arXiv:2009.04379 [math.NT], 2020.
%F a(n) = (-8)^n*binomial(2*n, n)*hypergeom([1/2, -n, -n, n + 1], [1, 1, 1/2 - n], 1/8). - _Peter Luschny_, Aug 24 2020
%e a(1) = C(1,0)*C(1,0)*C(0,0)*C(2,1)*(-8) + C(1,1)*C(2,1)*C(2,1)*C(0,0) = -16 + 4 = -12.
%t a[n_]:=Sum[Binomial[n,k]Binomial[n+k,k]Binomial[2k,k]Binomial[2(n-k),n-k](-8)^(n-k),{k,0,n}];
%t Table[a[n],{n,0,18}]
%Y Cf. A000796, A000984, A005260, A336981, A336982, A337247.
%K sign
%O 0,2
%A _Zhi-Wei Sun_, Aug 23 2020