Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Apr 25 2024 09:13:58
%S 0,1,5,41,297,1522,7606,35830,159734,691175,2911275,11995471,48573775,
%T 193800376,763577276,2976338876,11493413820,44020618429,167385941185,
%U 632387189285,2375420846885,8876467428110,33013780952786,122261706093330,451010242361106,1657768413841731,6073328651742855
%N a(n) = Sum_{i=1..n} (i-1)^2*T(i)^2, where T(i) = A000073(i) is the i-th tribonacci number.
%D R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202. (Note that this paper uses an offset for the tribonacci numbers that is different from that used in A000073.)
%H G. C. Greubel, <a href="/A337285/b337285.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_19">Index entries for linear recurrences with constant coefficients</a>, signature (7,-9,-7,-56,96,108,252,-162,-114,-318,126,-16,136,-36,12,-21,3,-1,1).
%F From _G. C. Greubel_, Nov 22 2021: (Start)
%F a(n) = A337286(n) - 2*A337283(n) + A107239(n).
%F a(n) = Sum_{j=0..n-1} j^2*A000073(j+1)^2.
%F G.f.: x^2*(1 -2*x +15*x^2 +62*x^3 -97*x^4 +96*x^5 +73*x^6 -64*x^7 -57*x^8 -194*x^9 -127*x^10 -138*x^11 -55*x^12 -12*x^13 -9*x^14 -4*x^15)/((1-x)*(1 +x +x^2 -x^3)^3*(1 -3*x -x^2 -x^3)^3). (End)
%t T[n_]:= T[n]= If[n<2, 0, If[n==2, 1, T[n-1] +T[n-2] +T[n-3]]]; (* A000073 *)
%t A337285[n_]:= Sum[j^2*T[j+1]^2, {j,0,n-1}];
%t Table[A337285[n], {n, 40}] (* _G. C. Greubel_, Nov 22 2021 *)
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x^2*(1 -2*x+15*x^2+62*x^3-97*x^4+96*x^5+73*x^6-64*x^7-57*x^8-194*x^9-127*x^10-138*x^11 -55*x^12-12*x^13-9*x^14-4*x^15)/((1-x)*(1+x+x^2-x^3)^3*(1-3*x-x^2 -x^3)^3) )); // _G. C. Greubel_, Nov 22 2021
%o (Sage)
%o @CachedFunction
%o def T(n): # A000073
%o if (n<2): return 0
%o elif (n==2): return 1
%o else: return T(n-1) +T(n-2) +T(n-3)
%o def A337285(n): return sum( j^2*T(j+1)^2 for j in (0..n-1) )
%o [A337285(n) for n in (1..40)] # _G. C. Greubel_, Nov 22 2021
%Y Cf. A000073, A085697, A107239, A337282, A337283, A337284, A337286.
%K nonn
%O 1,3
%A _N. J. A. Sloane_, Sep 12 2020