login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positive integers k such that k^2 = A^2+B^2+C^2 and A^3+B^3+C^3 = m^3, where gcd(A,B,C) = 1 and A, B, C, m are positive integers.
0

%I #37 Nov 13 2022 08:01:12

%S 75,119,551,755,4501,4895,16371,56863,61091,74201,201797,336709,

%T 534793,596827,879397,1007541

%N Positive integers k such that k^2 = A^2+B^2+C^2 and A^3+B^3+C^3 = m^3, where gcd(A,B,C) = 1 and A, B, C, m are positive integers.

%C From _Chai Wah Wu_, Sep 04 2020: (Start)

%C A. Martin and R. Davis showed that 91091088729334859 = sqrt(11868013975030087^2+16269106368215226^2+88837226814909894^2) is a term (see Links).

%C Table of values for k, A, B, C, m:

%C k A B C m

%C ---------------------------------------------

%C 75 14 23 70 71

%C 119 3 34 114 115

%C 551 18 349 426 493

%C 755 145 198 714 721

%C 4501 1016 2364 3693 4013

%C 4895 213 3450 3466 4357

%C 16371 3542 9286 13009 14497

%C 56863 6213 32194 46458 51157

%C 61091 29233 29574 44754 51985

%C 74201 32913 38444 54264 63185

%C 201797 106677 117252 124876 168373

%C 336709 110051 118044 295512 306467

%C 534793 116457 286752 436136 476393

%C 596827 202023 234550 510270 536023

%C 879397 43472 613560 628485 782597

%C 1007541 272267 417416 875656 914315

%C (End)

%H A. Martin and R. Davis, <a href="https://archive.org/details/bub_gb_UuFJAQAAIAAJ/page/n225/mode/2up">Solution of problem 143</a>, Jahrbuch über die Fortschritte der Mathematik, Band 29, Jahrgang 1898, pub. 1900, p. 157.

%H Ed Pegg Jr.'s Math Puzzles, <a href="http://www.mathpuzzle.com/cbumpkin.txt">A^2 + B^2 + C^2 = Square, A^3 + B^3 + C^3 = Cube</a>

%H Seiji Tomita, <a href="http://www.maroon.dti.ne.jp/fermat/dioph196e.html">A simultaneous equation {x^2+y^2+z^2=u^2, x^3+y^3+z^3=v^3} has infinitely many integer solutions</a>.

%e 56863 is in the sequence because 56863^2 = 6213^2 + 32194^2 + 46458^2, 6213^3 + 32194^3 + 46458^3 = 51157^3 and gcd(6213, 32194, 46458) = 1.

%Y Cf. A096910.

%K nonn,more

%O 1,1

%A _Mo Li_, Aug 21 2020