login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Modulo 3 Pisano period of 'n-bonacci' series.
2

%I #47 Dec 24 2022 02:30:21

%S 1,8,13,26,104,728,364,80,91,8744,3851,3280,59048,4782968,7174453,

%T 3438578,16139240,5373368,5235412,1678822106,86049704,387420488,

%U 47071589413,140633637386,2952400,728,757,9526168288,7312949144072,49566102697280,24477226494760

%N Modulo 3 Pisano period of 'n-bonacci' series.

%C The modulo 2 variant of this sequence gives 1, 3, 4, 5, 6, 7, 8, ... (the natural numbers not including 2), and likewise, when the modulus is a power of 2, it seems that the Pisano period lengths form an arithmetic progression. (Note that both of these observations are based on empirical observation only).

%C a(39)=797161, a(80)=6560, a(81)=6643, a(90)=5380840, a(242)=59048, a(243)=59293, a(728)=531440, a(729)= 532171, a(2186)=4782968, a(2187)=4785157, a(6560)=43046720, a(6561)=43053283, a(19682)=387420488, a(19683)=387440173. - _Chai Wah Wu_, Sep 15 2020

%F Conjecture: a(3^k-1)=a(3^k)-3^k-2=3^(2k)-1, a(3^k)=3^k(3^k+1)+1 for k>0. - _Chai Wah Wu_, Sep 15 2020

%e For n = 3, the remainders modulo 3 of the tribonacci series are 0, 1, 1, 2, 1, 1, 1, 0, 2, 0, 2, 1, 0, (these repeat indefinitely), so the Pisano period of the 'tribonacci' sequence is 13.

%o (PARI) a(n) = {my(v=w=concat(0, vector(n-1, i, 1))); for(k=1, oo, v=concat(v[2..n], vecsum(v)%3); if(v==w, return(k))); } \\ _Jinyuan Wang_, Aug 20 2020

%o (Python)

%o def A337212(n):

%o x, y, k, r, m = (3**n-3)//2, (3**n-3)//2, (n-1)%3, 3**(n-1), 0

%o while True:

%o m += 1

%o a, b = divmod(x,3)

%o x, k = a+k*r, (k+k-b)%3

%o if y == x:

%o return m # _Chai Wah Wu_, Sep 14 2020

%Y Cf. A001175 (period of Fibonacci numbers mod n).

%K nonn

%O 1,2

%A _Adam Bascal_, Aug 19 2020

%E a(20)-a(22) from _Jinyuan Wang_, Aug 20 2020

%E a(23) from _Chai Wah Wu_, Sep 14 2020

%E a(24)-a(28) from _Chai Wah Wu_, Sep 15 2020

%E a(29)-a(31) from _Chai Wah Wu_, Sep 21 2020