login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that b^(p-1) == 1 (mod p-1) for all b coprime to p-1.
2

%I #32 Sep 22 2024 23:20:29

%S 2,3,5,7,13,17,19,37,41,43,61,73,97,101,109,127,157,163,181,193,241,

%T 257,313,337,379,401,421,433,487,541,577,601,641,661,673,757,769,881,

%U 883,937,1009,1093,1153,1201,1249,1297,1321,1361,1459,1601,1621,1801,1861,1873,2017,2029,2053,2161,2269,2341,2437,2521,2593

%N Primes p such that b^(p-1) == 1 (mod p-1) for all b coprime to p-1.

%C Equivalently: primes p to p-1 a Novák-Carmichael number A124240.

%C These p are such that for all x in [0,p), and all b coprime to p-1, x^(b^(p-1)) == x (mod p), this follows from the FLT.

%C Equivalently, primes p such that for all primes q | p-1, q-1 | p-1. Primes such that p-1 is in A124240. No prime of the form 12k+11 is in this sequence. - _Paul Vanderveen_, Apr 02 2022

%C Primes p such that B^(b^(p-1)-1) == 1 (mod p^2) for every B coprime to p and for every b coprime to (p-1)*p. - _Thomas Ordowski_, Sep 01 2024

%H Michael S. Branicky, <a href="/A337119/b337119.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..300 from Harvey P. Dale)

%e 7 is in the sequence because it is prime, 1 and 5 are the integers (mod 6) coprime to 6; 1^6 mod 6 = 1; and 5^6 mod 6 = 1.

%e 11 is not in the sequence because 3 is coprime to 10; and 3^10 mod 10 = 9 <> 1.

%t a={}; For[p=2,p<2600, p=NextPrime[p],b=p-1; While[--b>0&&(GCD[b,p-1]!=1||PowerMod[b,p-1,p-1]==1)];If[b==0,AppendTo[a,p]]];a

%t bcpQ[n_]:=Module[{b=Select[Range[n-2],CoprimeQ[n-1,#]&]},AllTrue[ b,PowerMod[ #,n-1,n-1]==1&]]; Select[Prime[Range[400]],bcpQ] (* _Harvey P. Dale_, Jan 01 2022 *)

%o (Python)

%o from math import gcd

%o from sympy import isprime

%o def ok(n):

%o if not isprime(n): return False

%o return all(pow(b, n-1, n-1) == 1 for b in range(2, n) if gcd(b, n-1)==1)

%o print([k for k in range(2594) if ok(k)]) # _Michael S. Branicky_, Apr 02 2022

%Y Cf. A124240.

%K nonn

%O 1,1

%A _Francois R. Grieu_, Aug 17 2020