Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Aug 14 2020 01:28:56
%S 0,150,8400,150300,1394400,8656200,40356000,153679800,498153600,
%T 1431378900,3705270000,8863150800,19694152800,41402744400,82382680800,
%U 157380332400,288000115200,511088547150,875865085200,1465721632200,2382961862400,3801687211800,5918070367200,9075809181600
%N a(n) = (n*sigma_9(n) - tau(n))/7 = (A282254(n) - A000594(n))/7, where tau is Ramanujan's tau, sigma_9(n) = Sum_{d divides n} d^9.
%C D. H. Lehmer shows that tau(n) == n*sigma_9(n) (mod 7), so a(n) is an integer for all n. Furthermore, if n == 3, 5, 6 (mod 7) then tau(n) == n*sigma_9(n) (mod 49). See the Wikipedia link below. It seems that the latter congruence also holds for most of the other numbers. Among the 571 numbers in [1, 1000] congruent to 0, 1, 2, 4 modulo 7, tau(n) == n*sigma_9(n) holds for 311 n's, and among the 5715 numbers in [1, 10000] congruent to 0, 1, 2, 4 modulo 7, the congruence holds for 3492 n's.
%C It seems that 150 divides a(n) for all n. There are no counterexamples for n <= 10000.
%C Number of n's in [2, N] which satisfy the higher-order congruence tau(n) == n*sigma_9(n) (mod 7^e) but not tau(n) == n*sigma_9(n) (mod 7^(e+1)):
%C N = 1000:
%C e | n == 3, 5, 6 (mod 7) | n == 0, 1, 2, 4 (mod 7) | total
%C ---+----------------------+-------------------------+-------
%C 1 | 0 | 260 | 260
%C ---+----------------------+-------------------------+-------
%C 2 | 358 | 80 | 438
%C ---+----------------------+-------------------------+-------
%C 3 | 45 | 195 | 240
%C ---+----------------------+-------------------------+-------
%C 4 | 24 | 28 | 52
%C ---+----------------------+-------------------------+-------
%C 5 | 2 | 5 | 7
%C ---+----------------------+-------------------------+-------
%C 6 | 0 | 2* | 2
%C * n = 686, 942.
%C N = 10000:
%C e | n == 3, 5, 6 (mod 7) | n == 0, 1, 2, 4 (mod 7) | total
%C ---+----------------------+-------------------------+-------
%C 1 | 0 | 2223 | 2223
%C ---+----------------------+-------------------------+-------
%C 2 | 3368 | 728 | 4096
%C ---+----------------------+-------------------------+-------
%C 3 | 466 | 2280 | 2746
%C ---+----------------------+-------------------------+-------
%C 4 | 397 | 384 | 781
%C ---+----------------------+-------------------------+-------
%C 5 | 46 | 87 | 133
%C ---+----------------------+-------------------------+-------
%C 6 | 6 | 12 | 18
%C ---+----------------------+-------------------------+-------
%C 7 | 2** | 0 | 2
%C ** n = 5185, 9021.
%H Wikipedia, <a href="https://en.m.wikipedia.org/wiki/Ramanujan_tau_function#Congruences_for_the_tau_function">Congruences for the tau function</a>
%e a(2) = (n*sigma_9(2) - tau(2))/7 = (2*(1^9+2^9) - (-24))/7 = 1050/7 = 150;
%e a(3) = (n*sigma_9(3) - tau(3))/7 = (3*(1^9+3^9) - 252)/7 = 58800/7 = 8400.
%o (PARI) a(n) = (n*sigma(n, 9) - polcoeff( x * eta(x + x * O(x^n))^24, n))/7
%Y Cf. A000594, A282254, A027860.
%K nonn
%O 1,2
%A _Jianing Song_, Aug 12 2020