login
A337015
Number of distinct transitive subgroups of S_n, counting conjugates as distinct.
1
1, 1, 2, 9, 20, 279, 512, 19087, 71602, 636365, 1517042, 321965982, 240609602, 8809543877, 144729615032, 26818608209252, 6603755558402, 2737593592637477
OFFSET
1,3
COMMENTS
This sequence is the labeled version of A002106. I have proven that A005432(p)-a(p) == 1 (mod p) if p is prime. Based on n<= 18,
I have conjectured that log(A005432(n)/a(n)) > (n-1)/2 for n prime and log(A005432(n)/a(n)) < (n-1)/2 for n composite.
L. Pyber shows c^{n^2(1+o(1))} <= a(n) <= d^{n^2(1+o(1)}, c=2^{1/16}, d=24^{1/6}; conjectures lower bound is accurate.
EXAMPLE
For n = 4 the following 9 subgroups of S_4 are transitive:
Group( [ (1,4)(2,3), (1,3)(2,4) ] )
Group( [ (1,3,2,4), (1,2)(3,4) ] )
Group( [ (1,4,3,2), (1,3)(2,4) ] )
Group( [ (1,2,4,3), (1,4)(2,3) ] )
Group( [ (1,4)(2,3), (1,3)(2,4), (3,4) ] )
Group( [ (1,2)(3,4), (1,3)(2,4), (1,4) ] )
Group( [ (1,2)(3,4), (1,4)(2,3), (2,4) ] )
Group( [ (1,4)(2,3), (1,3)(2,4), (2,4,3) ] )
Group( [ (1,4)(2,3), (1,3)(2,4), (2,4,3), (3,4) ] )
PROG
(GAP)
NrTransSubSn:=function(n)
local s, cnt, i, u, no;
s:=SymmetricGroup(n);
cnt:=0;
for i in [1..NrTransitiveGroups(n)] do
u:=TransitiveGroup(n, i);
no:=Normalizer(s, u);
cnt:=cnt+IndexNC(s, no);
Print("Class ", i, ", found ", IndexNC(s, no), " new, total: ", cnt, "\n");
od;
return cnt;
end; # Alexander Hulpke
CROSSREFS
Sequence in context: A041007 A002360 A100516 * A041285 A002888 A041963
KEYWORD
nonn,more
AUTHOR
STATUS
approved