Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Aug 15 2020 12:50:55
%S 0,0,2,0,3,4,8,5,16,12,25,22,37,33,60,47,77,74,107,93,143,127,181,167,
%T 225,209,289,257,342,327,417,384,501,465,588,555,684,648,809,750,918,
%U 883,1058,998,1210,1146,1366,1306,1534,1470,1740,1646,1925,1862,2150,2055,2390,2290,2635
%N Sum of the smallest two side lengths of all distinct integer-sided triangles with perimeter n.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Integer_triangle">Integer Triangle</a>
%F a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * (i + k).
%F Conjectures from _Colin Barker_, Aug 10 2020: (Start)
%F G.f.: x^3*(2 + 2*x + 3*x^2 + 3*x^3 + 4*x^4 + 3*x^5 + 3*x^6) / ((1 - x)^4*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)^2).
%F a(n) = -a(n-1) + 2*a(n-3) + 4*a(n-4) + 2*a(n-5) - a(n-6) - 5*a(n-7) - 5*a(n-8) - a(n-9) + 2*a(n-10) + 4*a(n-11) + 2*a(n-12) - a(n-14) - a(n-15) for n>15.
%F (End)
%e a(3) = 2; There is one integer-sided triangle with perimeter 3, [1,1,1]. The sum of the smallest two side lengths is 1 + 1 = 2.
%e a(7) = 8; There are two distinct integer-sided triangles with perimeter 7, [1,3,3] and [2,2,3]. The sum of the smallest two side lengths of these triangles is 1 + 3 + 2 + 2 = 8.
%t Table[Sum[Sum[(i + k)*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 80}]
%Y Cf. A005044.
%K nonn,easy
%O 1,3
%A _Wesley Ivan Hurt_, Aug 09 2020