login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lexicographically earliest infinite sequence such that a(i) = a(j) => A335880(sigma(i)) = A335880(sigma(j)), for all i, j >= 1.
3

%I #6 Aug 11 2020 10:38:20

%S 1,2,1,3,2,2,1,4,5,5,2,3,3,2,2,6,5,7,8,9,1,5,2,4,6,9,8,3,4,5,1,10,2,7,

%T 2,10,7,4,3,11,9,2,5,9,7,5,2,6,12,13,5,13,7,4,5,4,8,11,4,9,6,2,5,14,9,

%U 5,15,10,2,5,5,16,11,12,6,7,2,9,8,13,12,10,9,3,7,7,4,11,11,12,3,9,1,5,4,10,13,17,7,18,19,7,5,12,2

%N Lexicographically earliest infinite sequence such that a(i) = a(j) => A335880(sigma(i)) = A335880(sigma(j)), for all i, j >= 1.

%C Restricted growth sequence transform of the function f(n) = A335880(A000203(n)), or equally, of the ordered pair [A336928(n), A336929(n)].

%H Antti Karttunen, <a href="/A336927/b336927.txt">Table of n, a(n) for n = 1..65537</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%o (PARI)

%o up_to = 65537;

%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };

%o A329697(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A329697(f[k,1]-1)))); };

%o A331410(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A331410(f[k,1]+1)))); };

%o Aux335880(n) = [A329697(n),A331410(n)];

%o v336927 = rgs_transform(vector(up_to, n, Aux335880(sigma(n))));

%o A336927(n) = v336927[n];

%Y Cf. A000203, A335880, A336928, A336929.

%Y Cf. also A336926.

%K nonn

%O 1,2

%A _Antti Karttunen_, Aug 11 2020