login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Period of binary representation of 1/A003961(n): a(n) = A007733(A003961(n)).
2

%I #13 Mar 29 2022 03:48:16

%S 1,2,4,6,3,4,10,18,20,6,12,12,8,10,12,54,18,20,11,6,20,12,28,36,21,8,

%T 100,30,5,12,36,162,12,18,30,60,20,22,8,18,14,20,23,12,60,28,52,108,

%U 110,42,36,24,58,100,12,90,44,10,60,12,66,36,20,486,24,12,35,18,28,30,9,180,39,20,84,66,60,8,82,54,500

%N Period of binary representation of 1/A003961(n): a(n) = A007733(A003961(n)).

%H Antti Karttunen, <a href="/A336843/b336843.txt">Table of n, a(n) for n = 1..16383</a>

%H Antti Karttunen, <a href="/A336843/a336843.txt">Data supplement: n, a(n) computed for n = 1..65537</a>

%F a(n) = A007733(A003961(n)).

%F a(n) = A002326(A108228(n)) = A002326(A048673(n)-1).

%o (PARI) A336843(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); znorder(Mod(2,factorback(f))); };

%Y Permutation of A002326.

%Y Cf. A003961, A007733, A048673, A108228, A336842.

%K nonn

%O 1,2

%A _Antti Karttunen_, Aug 06 2020