%I #24 Aug 17 2020 13:21:07
%S 0,1,2,551,4,74,77,38,15,16,16,15,1185,41,17,84,273,21,25,20,1342,164,
%T 19,51,66,55,62,65,78,93,34,79,141,105,56,133,357,2621,100,119,799,
%U 278,149,305,305,126,99,227,387,272,274,465,714,580,689,172,282,2163
%N Number of steps in Conway's Game of Life for a block and row of n cells to stabilize.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Conway's_Game_of_Life">Conway's Game of Life</a>.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Methuselah_(cellular_automaton)">Methuselah (cellular automaton)</a>.
%e As a block by itself is stable, a(0)=0.
%e . . . .
%e . o o .
%e . o o .
%e . . . .
%e A block with a single square adjacent will turn into a boat on the next tick, which is stable.
%e . . . . .|. . . . .
%e . o o . .|. o o . .
%e . o o . .|. o . o .
%e . . . o .|. . o . .
%e . . . . .|. . . . .
%e A block with a row of two squares will take two generations to turn into a boat.
%e . . . . . .|. . . . .|. . . . .
%e . o o . . .|. o o . .|. o o . .
%e . o o . . .|. o . . .|. o . o .
%e . . . o o .|. . o o .|. . o . .
%e . . . . . .|. . . . .|. . . . .
%e A block with a row of three squares is known as a methuselah (see Wikipedia link), taking 551 generations to stabilize. The final configuration has two escaped gliders, one blinker, eight blocks, two boats, one ship, two beehives, one loaf, and one fleet. Only the initial configuration is shown below.
%e . . . . . . .
%e . o o . . . .
%e . o o . . . .
%e . . . o o o .
%e . . . . . . .
%K nonn
%O 0,3
%A _William C. Laursen_, Aug 04 2020