login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} (-k)^(n-j) * binomial(n,j) * binomial(n,j-1) for n > 0.
4

%I #28 Aug 08 2020 01:36:24

%S 1,1,1,1,1,1,1,1,0,1,1,1,-1,-1,1,1,1,-2,-1,0,1,1,1,-3,1,5,2,1,1,1,-4,

%T 5,10,-3,0,1,1,1,-5,11,9,-38,-21,-5,1,1,1,-6,19,-4,-103,28,51,0,1,1,1,

%U -7,29,-35,-174,357,289,41,14,1,1,1,-8,41,-90,-203,1176,-131,-1262,-391,0,1

%N Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} (-k)^(n-j) * binomial(n,j) * binomial(n,j-1) for n > 0.

%H Seiichi Manyama, <a href="/A336727/b336727.txt">Antidiagonals n = 0..139, flattened</a>

%F G.f. A_k(x) of column k satisfies A_k(x) = 1 + x * A_k(x) / (1 + k * x * A_k(x)).

%F A_k(x) = 2/(1 - (k+1)*x + sqrt(1 + 2*(k-1)*x + ((k+1)*x)^2)).

%F T(n, k) = Sum_{j=0..n} (-k)^j * (k+1)^(n-j) * binomial(n,j) * binomial(n+j,n)/(j+1).

%F (n+1) * T(n,k) = -(k-1) * (2*n-1) * T(n-1,k) - (k+1)^2 * (n-2) * T(n-2,k) for n>1. - _Seiichi Manyama_, Aug 08 2020

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 0, -1, -2, -3, -4, -5, ...

%e 1, -1, -1, 1, 5, 11, 19, ...

%e 1, 0, 5, 10, 9, -4, -35, ...

%e 1, 2, -3, -38, -103, -174, -203, ...

%e 1, 0, -21, 28, 357, 1176, 2575, ...

%t T[0, k_] := 1; T[n_, k_] := Sum[If[k == 0, Boole[n == j],(-k)^(n - j)] * Binomial[n, j] * Binomial[n , j - 1], {j, 1, n}] / n; Table[T[k, n- k], {n, 0, 11}, {k, 0, n}] //Flatten (* _Amiram Eldar_, Aug 02 2020 *)

%o (PARI) {T(n, k) = if(n==0, 1, sum(j=1, n, (-k)^(n-j)*binomial(n, j)*binomial(n, j-1))/n)}

%o (PARI) {T(n, k) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A/(1+k*x*A)); polcoef(A, n)}

%o (PARI) {T(n, k) = sum(j=0, n, (-k)^j*(k+1)^(n-j)*binomial(n, j)*binomial(n+j, n)/(j+1))}

%Y Columns k=0-3 give: A000012, A090192, (-1)^n * A154825(n), A336729.

%Y Main diagonal gives A336728.

%Y Cf. A243631, A307884, A336708, A336709.

%K sign,tabl

%O 0,18

%A _Seiichi Manyama_, Aug 02 2020