Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Aug 02 2020 01:50:40
%S 1,1,0,1,1,0,1,2,1,0,1,4,4,1,0,1,8,14,8,1,0,1,16,50,46,16,1,0,1,32,
%T 178,278,146,32,1,0,1,64,634,1666,1454,454,64,1,0,1,128,2258,9998,
%U 14230,7358,1394,128,1,0,1,256,8042,59986,139750,115546,36590,4246,256,1,0
%N Rectangular array read by antidiagonals. T(n,k) is the number of length k walks from {} to [n] in the digraph representation of the superset/subset relation on P([n]) the powerset of [n], n>=0, k>=0.
%C The superset/subset relation on P([n]) is defined as: for all A,B in P([n]), A ~ B iff A is a subset of B or B is a subset of A.
%H P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; see page 339.
%e 1, 1, 1, 1, 1, 1, 1, 1, 1,...
%e 0, 1, 2, 4, 8, 16, 32, 64, 128,...
%e 0, 1, 4, 14, 50, 178, 634, 2258, 8042,...
%e 0, 1, 8, 46, 278, 1666, 9998, 59986, 359918,...
%e 0, 1, 16, 146, 1454, 14230, 139750, 1371494, 13461638,...
%t (* gives first 7 rows and 11 columns in about 3 minutes *)
%t Table[a = Subsets[Range[n]];f[list_] := Map[Apply[SubsetQ, #] &, list];
%t G = Map[f,Table[Table[{a[[i]], a[[j]]}, {i, 1, 2^n}], {j, 1, 2^n}]] //
%t Boole; H = (G - IdentityMatrix[2^n]) + Transpose[(G - IdentityMatrix[2^n]) + IdentityMatrix[2^n]];b = Inverse[IdentityMatrix[2^n] - z H] // Simplify; MatrixForm[b]; nn = 10; CoefficientList[Series[b[[1, 2^n]], {z, 0, nn}], z], {n, 0,6}] // Grid
%Y Cf. A027649 (column k=3, number of edges in the digraph).
%K nonn,tabl
%O 0,8
%A _Geoffrey Critzer_, Jul 31 2020