
COMMENTS

Michael B Rees has conjectured that for all primes p, each fully exponentiated prime factor less than p that divides the Wendt determinant W(p), if it exists, is of the form k*p + 1.
This sequence identifies the prime index p of Wendt determinants W(p) that have prime factors less than p.
These prime indices appear to be a subset of the lucky primes A031157.


MATHEMATICA

w[n_] := Resultant[x^n1, (1+x)^n1, x]; getp[n_] := Module[{W=w[n], lst=Table[Prime[m], {m, 1, PrimePi[n]}], lst1={}, j, k, l}, Do[j=1; While[W>0&&IntegerQ[W/lst[[l]]^j], j++]; If[j1>0, AppendTo[lst1, {lst[[l]], j1}]], {l, 1, Length@lst}]; Join[{n}, lst1]]; lst = {}; Do[lst1=getp[Prime[n]]; If[Length@lst1>1, AppendTo[lst, lst1[[1]]]], {n, 1, PrimePi[331]}]; lst
