login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Odd exponential admirable numbers: the odd terms of A336680.
1

%I #9 Jul 31 2020 06:46:34

%S 6485886225,71344748475,110260065825,123231838275,125730522225,

%T 149175383175,162485579025,185601564225,188090700525,191620685025,

%U 195686793225,201062472975,239977790325,265921335225,278893107675,304836652575,343751969925,395639059725,434554377075

%N Odd exponential admirable numbers: the odd terms of A336680.

%C Exponential admirable numbers that are odd are relatively rare: there are 5742336 even exponential admirable numbers that are smaller than the first odd term, i.e., a(1) = A336680(5742337).

%H Amiram Eldar, <a href="/A336681/b336681.txt">Table of n, a(n) for n = 1..65</a>

%e 6485886225 is a term since 6485886225 = 80535 + 241605 + ... + (-8456175) + ... + 2161962075 is the sum of its proper exponential divisors with one of them, 8456175, taken with a minus sign.

%t dQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m]); expDivQ[n_, d_] := Module[{ft = FactorInteger[n]}, And @@ MapThread[dQ, {ft[[;; , 2]], IntegerExponent[d, ft[[;; , 1]]]}]]; esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; expAdmQ[n_] := (ab = esigma[n] - 2*n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && expDivQ[n, ab/2]; Select[Range[1, 10^9, 2], expAdmQ]

%Y The exponential version of A109729.

%Y Intersection of A005408 and A336680.

%Y Subsequence of A321147.

%Y Similar sequences: A329188, A334973, A334975.

%K nonn

%O 1,1

%A _Amiram Eldar_, Jul 30 2020