Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Jul 29 2020 20:39:33
%S 3,49,1681,18490,23762,656914,843637,5606230,35558770,46297822,
%T 59006794,114594493,132859642,138852445,157906534,289405462,299441785,
%U 536671282,813736930,1175272581,1276553470,1655870629,5086602202,5429407657,6549516022,8645559934,10373399185
%N Numbers k such that A063659(k) = A063659(k+1).
%C Analogous to A001274 as A063659 is analogous to Euler's phi function (A000010).
%H E. K. Haviland, <a href="https://doi.org/10.1215/S0012-7094-44-01175-0">An analogue of Euler's phi-function</a>, Duke Math. J., Vol. 11 (1944), pp. 869-872.
%e 3 is a term since A063659(3) = A063659(4) = 3.
%t f[p_, e_] := If[e == 1, p, p^e - p^(e-2)]; s[n_] := Times @@ f @@@ FactorInteger[n]; s1 = 1; seq = {}; Do[s2 = s[n]; If[s1 == s2, AppendTo[seq, n-1]]; s1 = s2, {n, 2, 10^5}]; seq
%Y Cf. A000010, A063659, A001274.
%K nonn
%O 1,1
%A _Amiram Eldar_, Jul 29 2020