login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of positive divisors of odd part of n that are divisible by every (odd) prime dividing it: a(n) = A057723(A000265(n)).
5

%I #21 Nov 12 2022 05:25:41

%S 1,1,3,1,5,3,7,1,12,5,11,3,13,7,15,1,17,12,19,5,21,11,23,3,30,13,39,7,

%T 29,15,31,1,33,17,35,12,37,19,39,5,41,21,43,11,60,23,47,3,56,30,51,13,

%U 53,39,55,7,57,29,59,15,61,31,84,1,65,33,67,17,69,35,71,12,73,37,90,19,77,39,79,5,120,41,83,21,85,43

%N Sum of positive divisors of odd part of n that are divisible by every (odd) prime dividing it: a(n) = A057723(A000265(n)).

%H Antti Karttunen, <a href="/A336652/b336652.txt">Table of n, a(n) for n = 1..16384</a>

%H Antti Karttunen, <a href="/A336652/a336652.txt">Data supplement: n, a(n) computed for n = 1..65537</a>

%F Multiplicative with a(2^e) = 1, and for odd primes p, a(p^e) = (p + p^2 + ... + p^e) = sigma(p^e)-1.

%F a(n) = A057723(A000265(n)).

%F a(n) = A204455(n) * A336649(n).

%F Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/21) * Product_{p prime} (1 - 1/p^2 + 1/p^3) = (Pi^2/21) * A330596 = 0.3517974711... . - _Amiram Eldar_, Nov 12 2022

%t f[2, e_] := 1; f[p_, e_] := (p^(e+1) - 1)/(p-1) - 1; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Dec 07 2020 *)

%o (PARI) A336652(n) = if(1==n,n,my(f=factor(n)); prod(i=1,#f~,if(2==f[i,1],1,-1+(((f[i,1]^(1+f[i,2]))-1) / (f[i,1]-1)))));

%Y Cf. A000265, A000593, A057723, A204455, A330596, A336649, A336651.

%K nonn,mult

%O 1,3

%A _Antti Karttunen_, Jul 30 2020