login
A336577
a(n) = Sum_{k=0..n} 2^k * binomial(n,k) * binomial(n^2+k+1,n)/(n^2+k+1).
4
1, 3, 24, 498, 18708, 1055838, 80682414, 7829287392, 924359573112, 128815914107370, 20717986773639696, 3779867347688995698, 771666206195918154156, 174345811623642373266360, 43198501381068549879753648, 11648965476456962547182140512, 3396661425137920919866033312752
OFFSET
0,2
LINKS
FORMULA
a(n) = (1/(n^2+1)) * Sum_{k=0..n} 2^(n-k) * binomial(n^2+1,k) * binomial((n+1)*n-k,n-k).
a(n) ~ 3^n * exp(n + 1/6) * n^(n - 5/2) / sqrt(2*Pi). - Vaclav Kotesovec, Jul 31 2021
From Seiichi Manyama, Aug 10 2023: (Start)
a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * 3^(n-k) * binomial(n,k) * binomial((n+1)*n-k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=1..n} 3^k * 2^(n-k) * binomial(n,k) * binomial(n^2,k-1) for n > 0. (End)
MATHEMATICA
a[n_] := Sum[2^k * Binomial[n, k] * Binomial[n^2 + k + 1, n]/(n^2 + k + 1), {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Jul 27 2020 *)
PROG
(PARI) a(n) = sum(k=0, n, 2^k*binomial(n, k)*binomial(n^2+k+1, n)/(n^2+k+1));
(PARI) a(n) = sum(k=0, n, 2^(n-k)*binomial(n^2+1, k)*binomial((n+1)*n-k, n-k))/(n^2+1);
CROSSREFS
Main diagonal of A336574.
Sequence in context: A371126 A185970 A279165 * A194157 A166736 A330297
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 26 2020
STATUS
approved