Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Dec 07 2023 01:42:54
%S 0,0,0,2,0,0,0,6,3,0,0,6,0,0,0,14,0,6,0,10,0,0,0,18,5,0,12,14,0,0,0,
%T 30,0,0,0,36,0,0,0,30,0,0,0,22,15,0,0,42,7,10,0,26,0,24,0,42,0,0,0,30,
%U 0,0,21,62,0,0,0,34,0,0,0,96,0,0,15,38,0,0,0,70,39,0,0,42,0,0,0,66,0,30,0,46,0,0,0,90
%N Sum of proper divisors of n that are divisible by every prime that divides n.
%H Antti Karttunen, <a href="/A336563/b336563.txt">Table of n, a(n) for n = 1..10800</a>
%H Antti Karttunen, <a href="/A336563/a336563.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%F a(n) = A057723(n) - n.
%F a(n) = A007947(n) * A336567(n) = A007947(n) * A001065(A003557(n)).
%F a(n) = A336564(n) - A033879(n).
%F Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A065487 - 1 = 0.231291... . - _Amiram Eldar_, Dec 07 2023
%t f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - n; Array[a, 100] (* _Amiram Eldar_, May 06 2023 *)
%o (PARI)
%o A007947(n) = factorback(factorint(n)[, 1]);
%o A057723(n) = { my(r=A007947(n)); (r*sigma(n/r)); };
%o A336563(n) = (A057723(n)-n);
%o \\ Or just as:
%o A336563(n) = { my(x=A007947(n),y = n/x); (x*(sigma(y)-y)); };
%Y Cf. A001065, A003557, A007947, A057723, A033879, A065487, A335341, A336564, A336565, A336566, A336567.
%Y Cf. A005117 (positions of zeros).
%K nonn
%O 1,4
%A _Antti Karttunen_, Jul 27 2020