login
a(n) is the smallest positive k such that Fibonorial(n) - k is a prime, for n>3.
1

%I #19 Sep 02 2020 14:38:03

%S 1,1,1,1,1,11,19,19,29,19,1,1,97,41,23,131,107,53,101,529,53,269,347,

%T 97,317,97,353,73,97,193,71,1543,661,257,193,191,151,443,167,967,251,

%U 2441,163,151,379,229,127,59,1223,911,389,349,919,179,1051,167,547,541

%N a(n) is the smallest positive k such that Fibonorial(n) - k is a prime, for n>3.

%e For n=5, a(5) = Fibonorial(5) - 1 = 30 - 1 = 29 is a prime.

%t Table[(Fibonorial[n]-NextPrime[Fibonorial[n],-1]),{n,4,50}]

%o (PARI) f(n) = prod(i=1, n, fibonacci(i)); \\ A003266

%o a(n) = my(fn=f(n)); fn - precprime(fn-1); \\ _Michel Marcus_, Jul 23 2020

%Y Cf. A003266, A059709 (locations of 1's), A336480.

%K nonn

%O 4,6

%A _Mohamed Sami Gattoufi_, Jul 22 2020